Construction with soil-cement blocks as a sustainable alternative for building envelopes

Authors

DOI:

https://doi.org/10.22320/07190700.2022.12.01.08

Keywords:

sustainable bricks, passive thermography in buildings, reduction of heat losses, thermal conductivity, surface thermal resistance

Abstract

Alternative materials, such as cement-stabilized earth blocks (CSEB), provide new opportunities to make environmentally friendly envelopes. Earth-based construction materials are easy to obtain, abundant in nature, and their use minimizes environmental impacts and improves the thermal performance of bricks. In this work, the thermal properties of CSEB are analyzed, to evaluate their efficiency for building envelopes. It is experimentally determined that cement percentages are between 3% and 9% for the manufacturing of CSEB for non-bearing masonry. The moisture content should be less than 20%, to avoid significant increases in thermal conductivity. Wall thermal resistivity and inner and outer thermal resistance are also determined by means of passive building thermography measurements. The different CSEB wall compositions of experimental dwellings under real use conditions were monitored during the winter, and from this, thermal transmittances were established for the walls of 1,219 W/m2K to 1.599 W/m2K The results obtained allow determining the relative efficiency of each building envelope type in avoiding heat losses.

Downloads

Download data is not yet available.

Author Biographies

Adriana Belen Costantini-Romero, Universidad Nacional de Córdoba, Córdoba, Argentina

 Architect, Assistant Professor at the National University of Córdoba.

Franco M. Francisca, Universidad Nacional de Córdoba, Córdoba, Argentina

PhD in Engineering Sciences and Civil Engineer, Professor.

References

AENOR (2008). Norma española UNE 41410. Bloques de Tierra Comprimida para Muros y Tabiques. Definiciones especificaciones y métodos de ensayo. Recuperado de https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0042285

ALLEN, G. T. R. (2012). Strength Properties of Stabilized Compressed Earth Blocks with Varying Soil Compositions. Tesis doctoral. University of Colorado.

BALAJI, N. C. y MANI, M. (2019). Error Analysis on Thermal Conductivity Measurements of Cement-stabilized Soil Blocks. Earthen Dwellings and Structures (pp. 333-343). Singapore: Springer. DOI: https://10.1007/978-981-13-5883-8_29

BALAJI, N. C., MANI, M. y VENKATARAMA REDDY, B. V. (2016). Thermal conductivity studies on cement-stabilised soil blocks. Proceedings of the Institution of Civil Engineers-Construction Materials, 70(1), 40-54. DOI: https://doi.org/10.1680/jcoma.15.00032

BORBÓN, A. C., CABANILLAS, R. E. y PÉREZ, J. B. (2010). Modelación y simulación de la transferencia de calor en muros de bloque de concreto hueco. Información tecnológica, 21(3), 27-38.DOI: 10.1612/inf.tecnol.4223it.09

COSTANTINI, A. B., CARRO PÉREZ, M. E. y FRANCISCA, F. M. (2016). Evaluación del comportamiento térmico de una edificación reemplazando el material de la envolvente por suelo-cemento. Avances en Energías Renovables y Medio Ambiente, 20, 33-43.

COSTANTINI, A. B., FRANCISCA, F. M. y GIOMI, I. (2021). Hygrothermal properties of soil-cement construction materials. Construction and building materials, 313, DOI: https://doi.org/10.1016/j.conbuildmat.2021.125518.

DAHMEN, J. y MUÑOZ, J. F. (2014). Earth masonry unit: sustainable CMU alternative. International Journal of GEOMATE, 6(2 SERL 12), 903-910.

DAMFEU, J. C., MEUKAM, P. y JANNOT, Y. (2016). Modeling and estimation of the thermal properties of clusters aggregates for construction materials: The case of clusters aggregates of lateritic soil, sand and pouzzolan. International Journal of Heat and Mass Transfer, 102, 407-416. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.044

DAO, K., OUEDRAOGO, M., MILLOGO, Y., AUBERT, J. E. y GOMINA, M. (2018). Thermal, hydric and mechanical behaviours of adobes stabilized with cement. Construction and Building Materials, 158, 84-96. DOI: 10.1016/j.conbuildmat.2017.10.001

FOX, M., COLEY, D., GOODHEW, S. y DE WILDE, P. (2014). Thermography methodologies for detecting energy related building defects. Renewable and Sustainable Energy Reviews, 40, 296-310. DOI: https://doi.org/10.1016/j.rser.2014.07.188

GRINZATO, E., VAVILOV, V. y KAUPPINEN, T. (1998). Quantitive infrared thermography in buildings. Energy and buildings, 29(1), 1-9. DOI: https://doi.org/10.1016/S0378-7788(97)00039-X

INTI (2005). Ahorro y certificación energética: la envolvente de los edificios. Saber cómo, (27), 4.

MOZEJKO, C. A. y FRANCISCA, F. M. (2020). Enhanced mechanical behavior of compacted clayey silts stabilized by reusing steel slag. Construction and Building Materials, 239. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117901

MUÑOZ, N., THOMAS, L. P. y MARINO, B. M. (2015). Comportamiento térmico dinámico de muros típicos empleando el método de la admitancia. Energías Renovables y Medio Ambiente (ERMA), 36, 31-39.

NAGARAJ, H. B., SRAVAN, M. V., ARUN, T. G. y JAGADISH, K. S. (2014). Role of lime with cement in long-term strength of Compressed Stabilized Earth Blocks. International Journal of Sustainable Built Environment, 3(1), 54-61.

Norma IRAM Nº 11601, (1996). Aislamiento térmico de edificios. Propiedades térmicas de los materiales para la construcción. Método de cálculo de la resistencia térmica total. www.iram.org.ar.

OUEDRAOGO, K. A. J., AUBERT, J. E., TRIBOUT, C. y ESCADEILLAS, G. (2020). Is stabilization of earth bricks using low cement or lime contents relevant? Construction and Building Materials, 236. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117578.

REVILLAS, S. M. (2011). Guía de la Termografía Infrarroja. Madrid: Asociación Española de Termografía Infrarroja.

REVUELTA, D., GARCÍA-CALVO, J. L., CARBALLOSA, P. y PEDROSA, F. (2021). Evaluation of the influence of the degree of saturation, measuring time and use of a conductive paste on the determination of thermal conductivity of normal and lightweight concrete using the hot-wire method. Materiales de Construcción, 71(344), e260-e260. DOI: https://doi.org/10.3989/mc.2021.03621

SEKHAR, D. C. y NAYAK, S. (2018). Utilization of granulated blast furnace slag and cement in the manufacture of compressed stabilized earth blocks. Construction and Building Materials, 166, 531-536. DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.125

SHARLON, M. R. (2008). Active Thermography: An Overview of Methods and Their Applications in Use Today. Orlando, Florida.

SITTON, J. D., ZEINALI, Y., HEIDARIAN, W. H. y STORY, B. A. (2018). Effect of mix design on compressed earth block strength. Construction and Building Materials, 158, 124-131. https://doi.org/10.1016/j.conbuildmat.2017.10.005

United Nations Environment Programme [UNEP] (2009). Recuperado de https://www.unenvironment.org/resources/annual-report/unep-2009-annual-report

WILLIAMS C., GOODHEW S., GRIFFITHS R. y WATSON, L. (2010). The feasibility of earth block masonry for building sustainable walling in the United Kingdom. Journal of Building Appraisal, 6(2), 99-108.

YAGI S. y KUNII D., (1957) Studies on Effective Thermal Conductivity in Packed Bed AIChE Journal, 3(3), 373-381. DOI: https://doi.org/10.1002/aic.690030317

YUN, T. S. y SANTAMARINA, J. C. (2008). Fundamental study of thermal conduction in dry soils. Granular matter, 10(3). DOI: https://doi.org/10.1007/s10035-007-0051-5

Published

2022-06-30

How to Cite

Costantini-Romero, A. B. ., & Francisca, F. M. (2022). Construction with soil-cement blocks as a sustainable alternative for building envelopes . Sustainable Habitat, 12(1), 114–125. https://doi.org/10.22320/07190700.2022.12.01.08

Issue

Section

Artículos