Daylight sufficiency of indoor environments under climate change scenarios

Authors

DOI:

https://doi.org/10.22320/07190700.2022.12.02.03

Keywords:

daylight, climate change, solar radiation

Abstract

The bioclimatic performance of buildings under climate change scenarios has been extensively studied from a thermo-energy perspective but hardly studied at all from the perspective of indoor daylight sufficiency. This shortcoming is related to the invariability of radiation data in the available weather files of future scenarios. This research proposes identifying the impacts that the variability of radiation data in weather files of future scenarios would have on daylight sufficiency in indoor spaces. The methodology includes the adaptation of available weather files and the running of daylight simulations for hypothetical workspaces located in Medellín, Colombia. The results show differences in the Spatial Daylight Autonomy – SDA metric of up to 18% in different future scenarios. In conclusion, the need is outlined to refine predictions of outdoor daylight availability that allow improving daylight performance evaluations under climate change scenarios.

Downloads

Download data is not yet available.

Author Biographies

Lucas Arango-Díaz, Universidad de San Buenaventura, Medellín, Colombia.

Doctor in Architecture and Urbanism, Researcher at the Faculty of Integrated Arts.

Maria Alejandra Garavito-Posada, Universidad de San Buenaventura, Medellín, Colombia.

Architect, Master's student in Bioclimatics, School of Integrated Arts

Juan Sebastian Calle-Medina, Universidad de San Buenaventura, Medellín, Colombia.

Conservator-Restorer of Movable Goods, Master's student in Bioclimatics, Faculty of Integrated Arts.

Adriana Marcela Murcia-Cardona, Universidad de San Buenaventura, Medellín, Colombia.

Interior Architect, Master's student in Bioclimatics, Faculty of Integrated Arts.

Olga Lucia Montoya-Flórez, Universidad de San Buenaventura, Cali, Colombia.

Doctor in Architecture and Urbanism, Researcher at the Faculty of Integrated Arts.

Sebastián Pinto-Quintero, Universidad Católica de Manizales

Master in Architecture and Urbanism, Researcher of the Faculty of Engineering and Architecture.

References

ARANGO-DÍAZ, L., PARRA CORREA, E., PUERTA SUÁREZ, A. Y SALAZAR, J. H. (2021). Discrepancies in dynamic daylight simulations in the tropic associated with the differences between measured and weather files solar radiation. Building Simulation, 8. DOI: 10.26868/25222708.2021.31015

ARANGO-DÍAZ, L., PIDERIT, M. B. Y ORTIZ CABEZAS, A. (2022). Estudio de las discrepancias en los tipos de cielo para análisis dinámico de la luz natural según los archivos climáticos disponibles. Caso Colombia. Revista de Arquitectura (Bogotá), 24(1), 84–97. DOI: https://doi.org/10.14718/RevArq.2022.24.1.4050

BAREA, G., VICTORIA MERCADO, M., FILIPPÍN, C., MONTEOLIVA, J. M. Y VILLALBA, A. (2022). New paradigms in bioclimatic design toward climatic change in arid environments. Energy and Buildings, 266. DOI: https://doi.org/10.1016/j.enbuild.2022.112100

BELCHER, S. E., HACKER, J. N. Y POWELL, D. S. (2005). Constructing design weather data for future climates. Building Services Engineering Research and Technology, 26(1), 49–61. DOI: https://doi.org/10.1191/0143624405bt112oa

BELLIA, L., PEDACE, A. Y FRAGLIASSO, F. (2015a). Dynamic daylight simulations: Impact of weather file’s choice. Solar Energy, 117, 224–235. DOI: https://doi.org/10.1016/j.solener.2015.05.002

BELLIA, L., PEDACE, A. Y FRAGLIASSO, F. (2015b). The role of weather data files in Climate-based Daylight Modeling. Solar Energy, 112, 163–168. DOI: https://doi.org/10.1016/j.solener.2014.11.033

BERARDI, U. Y JAFARPUR, P. (2020). Assessing the impact of climate change on building heating and cooling energy demand in Canada. Renewable and Sustainable Energy Reviews, 121. DOI: https://doi.org/10.1016/j.rser.2019.109681

BRE, F., E SILVA MACHADO, R. M., LAWRIE, L. K., CRAWLEY, D. B. Y LAMBERTS, R. (2021). Assessment of solar radiation data quality in typical meteorological years and its influence on the building performance simulation. Energy and Buildings, 250. DOI: https://doi.org/10.1016/j.enbuild.2021.111251

CONGEDO, P. M., BAGLIVO, C., SEYHAN, A. K. Y MARCHETTI, R. (2021). Worldwide dynamic predictive analysis of building performance under long-term climate change conditions. Journal of Building Engineering, 42. DOI: https://doi.org/10.1016/j.jobe.2021.103057

DERVISHI, S. Y MAHDAVI, A. (2013). A simple general luminous efficacy model of global irradiance. En Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association (pp. 3639–3644). Recuperado de: http://www.ibpsa.org/proceedings/BS2013/p_2222.pdf

FAKRA, A. H., BOYER, H., MIRANVILLE, F. Y BIGOT, D. (2011). A simple evaluation of global and diffuse luminous efficacy for all sky conditions in tropical and humid climate. Renewable Energy, 36(1), 298–306. DOI: https://doi.org/10.1016/j.renene.2010.06.042

FAN, X. (2022). A method for the generation of typical meteorological year data using ensemble empirical mode decomposition for different climates of China and performance comparison analysis. Energy, 240. https://doi.org/10.1016/j.energy.2021.122822

FAN, X., CHEN, B., FU, C. Y LI, L. (2020). Research on the influence of abrupt climate changes on the analysis of typical meteorological year in China. Energies, 13(24). DOI: https://doi.org/10.3390/en13246531

FONSECA, J. A., NEVAT, I. Y PETERS, G. W. (2020). Quantifying the uncertain effects of climate change on building energy consumption across the United States. Applied Energy, 277. DOI: https://doi.org/10.1016/j.apenergy.2020.115556

GONZÁLEZ CÁCERES, A. Y DÍAZ CISTERNAS, M. (2013). Función e impacto del archivo climático sobre las simulaciones de demanda energética. Hábitat Sustentable, 3(2), 75–85.

HOSSEINI, M., BIGTASHI, A. Y LEE, B. (2021). Evaluating the applicability of Typical Meteorological Year under different building designs and climate conditions. Urban Climate, 38. DOI: https://doi.org/10.1016/j.uclim.2021.100870

IDEAM (2019). Datos climáticos para Colombia. Recuperado de http://dhime.ideam.gov.co/atencionciudadano/

IPCC (2021). El cambio climático es generalizado, rápido y se está intensificando. Recuperado de: https://www.ipcc.ch/report/ar6/wg1/

IPCC AR6 WG I (2021). Summary for Policymakers. DOI: https://doi.org/10.1017/9781009157896.001

IPCC AR6 WG III (2022). Climate Change 2022. Mitigation of Climate Change. Summary for Policymakers. Recuperado de: https://www.ipcc.ch/report/ar6/wg1/

IVERSEN, A., SVENDSEN, S. Y NIELSEN, T. R. (2013). The effect of different weather data sets and their resolution on climate-based daylight modelling. Lighting Research and Technology, 45(3), 305–316. DOI: https://doi.org/10.1177/1477153512440545

JENTSCH, M. F., JAMES, P. A. B., BOURIKAS, L. Y BAHAJ, A. B. S. (2013). Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, 55, 514–524. DOI: https://doi.org/10.1016/j.renene.2012.12.049

JOARDER, M. A. R., PRICE, A. Y MOURSHED, M. (2009). The changing perspective of daylight design to face the challenge of climatechange. En SASBE 2009, 3rd International Conference on Smart and Sustainable Built Environments. Recuperado de: https://www.researchgate.net/publication/48354707

LEE, E. S., SZYBINSKA MATUSIAK, B., GEISLER MORODER, D., SELKOWITZ, S. E. Y HESCHONG, L. (2022). Advocating for view and daylight in buildings: Next steps. Energy and Buildings, 265. DOI: https://doi.org/10.1016/j.enbuild.2022.112079

MARSH, A. (2020). Dynamic Daylighting Software Details. AndrewMarch.Com. Recuperado de: http://andrewmarsh.com/software/daylight-box-web/

MONTEOLIVA, J. M., VILLALBA, A. Y PATTINI, A. E. (2017). Variability in dynamic daylight simulation in clear sky conditions according to selected weather file: Satellite data and land-based station data. Lighting Research and Technology, 49(4), 508–520. DOI: https://doi.org/10.1177/1477153515622242

ONU (2015). Acuerdo de París. Recuperado de: https://www.un.org/es/climatechange/paris-agreement

PAJEK, L. Y KOŠIR, M. (2021). Exploring climate-change impacts on energy efficiency and overheating vulnerability of bioclimatic residential buildings under central european climate. Sustainability (Switzerland), 13(12). DOI: https://doi.org/10.3390/su13126791

PEREZ, R., INEICHEN, P. Y SEALS, R. (1990). Modeling Daylight Availability and irradiance components from direct and global irradiance. Solar Energy, 44, 271–289.

PEREZ, R., SEALS, R. Y MICHALSKY, J. (1993). All_Weather model for sky luminance distribution. Preliminary configuration and validation. Solar Energy, 50(3), 235–245.

REMUND, J., MÜLLER, S., KUNZ, S., HUGUENIN-LANDL, B., STUDER, C., KLAUSER, D. Y SCHILTER, C. (2014). Handbook Part I: Software. METEOTEST.

RODRÍGUEZ ROA, A. (2010). Evaluación de los modelos globales del clima utilizados para la generación de escenarios de Cambio Climático con el clima presente en Colombia. Nota Técnica IDEAM, IDEAM-METEO/009-2010. Recuperado de: http://www.ideam.gov.co/documents/21021/21138/Evaluaci%C3%B3n+de+Modelos+Globales+-+IPCC.pdf/6d9d1816-6ce0-4346-8a69-043f04cbf580

SUN, J., LI, Z. Y XIAO, F. (2017). Analysis of Typical Meteorological Year selection for energy simulation of building with daylight utilization. Procedia Engineering, 205, 3080–3087. DOI: https://doi.org/10.1016/j.proeng.2017.10.303

TROUP, L. Y FANNON, D. (2016). Morphing climate data to simulate building energy consumption. En ASHRAE and IBPSA-USA Building Simulation Conference (pp. 439–446). Recuperado de: https://publications.ibpsa.org/conference/paper/?id=simbuild2016_C058

VONG, N. K. (2016). Climate change and energy use: Evaluating the impact of future weather on building energy performance in tropical regions. Tesis Doctoral. Universidad de Hawái- Mānoa. ScholarSpace repositorio de la Universidad de Hawái Recuperado de: http://hdl.handle.net/10125/45569

WANG, J., WEI, M. Y CHEN, L. (2019). Does typical weather data allow accurate predictions of daylight quality and daylight-responsive control system performance. Energy and Buildings, 184, 72–87. DOI: https://doi.org/10.1016/j.enbuild.2018.11.029

WILD, M. (2009). Global dimming and brightening: A review. Journal of Geophysical Research Atmospheres, 114(12). https://doi.org/10.1029/2008JD011470

YASSAGHI, H. Y HOQUE, S. (2019). An Overview of Climate Change and Building Energy: Performance, Responses and Uncertainties. Buildings, 9(7). DOI: https://doi:10.3390/buildings9070166

Published

2022-12-31

How to Cite

Arango-Díaz, L., Garavito-Posada, M. A., Calle-Medina, J. S., Murcia-Cardona, A. M., Montoya-Flórez, O. L., & Pinto-Quintero, S. (2022). Daylight sufficiency of indoor environments under climate change scenarios. Sustainable Habitat, 12(2), 40–51. https://doi.org/10.22320/07190700.2022.12.02.03

Issue

Section

Artículos

Most read articles by the same author(s)