Analysis of the physical and mechanical properties of waste tire rubber as a partial replacement of fine aggregate in concrete
DOI:
https://doi.org/10.22320/07190700.2022.12.02.04Keywords:
construction materials, sustainable development, environmentAbstract
The objective of this study is to evaluate the physical and mechanical properties of concrete with waste tire rubber (WTR) as a partial substitute for sand, considering local materials from the city of Cochabamba, Bolivia, to promote a circular economy. The sand was replaced by WTR (in volume) in four percentages: 0% (reference), 5%, 10%, and 20%, evaluating its mechanical properties (resistance to compression, traction, and bending) and physical properties (specific mass, water absorption, and void index). The results indicate that there is a tendency to decrease with a higher percentage of WTR, both for mechanical resistance and for physical properties, except for the mixture with 5% WTR, which had results comparable to concrete with natural sand. WTR can be used in the local production of concrete up to 5% without compromising its mechanical and physical properties, in addition to having a sustainable approach.
Downloads
References
ABD-ELAAL, E. S., ARABY, S., MILLS, J. E., YOUSSF, O., ROYCHAND, R., MA, X., ZHUGE, Y. Y GRAVINA, R. J. (2019). Novel approach to improve crumb rubber concrete strength using thermal treatment. Construction and Building Materials, 229. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116901
ABDELMONEM, A., EL-FEKY, M., NASR, E. Y KOHAIL, M. (2019). Performance of high strength concrete containing recycled rubber. Construction and Building Materials, 227. DOI: https://doi.org/10.1016/j.conbuildmat.2019.08.041
ABNT (2011). NBR 7222: Concreto e argamassa — Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos.
ALWESABI, E., BAKAR, B., ALSHAIKH, I. Y AKIL, H. (2020). Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre. Construction and Building Materials, 233. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117194
ASLANI, F., MA, G., WAN, D. L. Y. Y MUSELIN, G. (2018). Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. Journal of Cleaner Production, 182, 553-566. https://doi.org/10.1016/j.jclepro.2018.02.074
Asociación Española de Normalización (2020). UNE-EN 12350-2: Ensayos de hormigón fresco. Parte 2: Ensayo de asentamiento. UNE: Madrid, España.
ASTM (2015a). ASTM C127-15: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. DOI: https://doi.org/10.1520/C0127-15
ASTM (2015b). ASTM C128-15: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. DOI: https://doi.org/10.1520/C0128-15
ASTM (2016). ASTM C293/C293M-16: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading). DOI: https://doi.org/10.1520/C0293_C0293M-16
ASTM (2020). ASTM C136/C136M-19: Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. DOI: https://doi.org/10.1520/C0136_C0136M-19
ASTM (2021). ASTM C642-21. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. DOI: https://doi.org/10.1520/C0642-21
BISHT, K. Y RAMANA, P. (2017). Evaluation of mechanical and durability properties of crumb rubber concrete. Construction and building materials, 155, 811-817. DOI: https://doi.org/10.1016/j.conbuildmat.2017.08.131
CEN (2010). CEN/TS 14243:10. Materials produced from end of life tyres - Specification of categories based on their dimension(s) and impurities and methods for determining their dimension(s) and impurities. Recuperado de: https://standards.iteh.ai/catalog/standards/cen/713de38b-eb7a-4a4e-b1b1-fdf10f56a5f8/cen-ts-14243-2010
CZAJCZYŃSKA, D., KRZYŻYŃSKA, R., JOUHARA, H. Y SPENCER, N. (2017). Use of pyrolytic gas from waste tire as a fuel: A review. Energy, 134, 1121-1131. DOI: https://doi.org/10.1016/j.energy.2017.05.042
DERAKHSHAN, Z., GHANEIAN, M., MAHVI, A., CONTI, G., FARAMARZIAN, M., DEHGHANI, M. Y FERRANTE, M. (2017). A new recycling technique for the waste tires reuse. Environmental research, 158, 462-469. DOI: https://doi.org/10.1016/j.envres.2017.07.003
EISA, A. S., ELSHAZLI, M. T. Y NAWAR, M. T. (2020). Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams. Construction and Building Materials, 252. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119078
ELCHALAKANI, M. (2015). High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers. Structures, 1, 20-38. DOI: https://doi.org/10.1016/j.istruc.2014.06.001
GESOĞLU, M., GÜNEYISI, E., KHOSHNAW, G. E İPEK, S. (2014). Investigating properties of pervious concretes containing waste tire rubbers. Construction and Building Materials, 63, 206-213. DOI: https://doi.org/10.1016/j.conbuildmat.2014.04.046
GRAVINA, R. J. Y XIE, T. (2022). Toward the development of sustainable concrete with Crumb Rubber: Design-oriented Models, Life-Cycle-Assessment and a site application. Construction and Building Materials, 315. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125565
GURUNANDAN, M., PHALGUN, M., RAGHAVENDRA, T. Y UDAYASHANKAR, B. (2019). Mechanical and damping properties of rubberized concrete containing polyester fibers. Journal of Materials in Civil Engineering, 31(2), 1-10. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002614
HILAL, N. (2017). Hardened properties of self-compacting concrete with different crumb rubber size and content. International Journal of Sustainable Built Environment, 6(1), 191-206. DOI: https://doi.org/10.1016/j.ijsbe.2017.03.001
HOSSEIN, A. H., AZARIJAFARI, H. Y KHOSHNAZAR, R. (2022). The role of performance metrics in comparative LCA of concrete mixtures incorporating solid wastes: A critical review and guideline proposal. Waste Management, 140, 40-54. DOI: https://doi.org/10.1016/j.wasman.2022.01.010
HUANG, W., HUANG, X., XING, Q. Y ZHOU, Z. (2020). Strength reduction factor of crumb rubber as fine aggregate replacement in concrete. Journal of Building Engineering, 32. DOI: https://doi.org/10.1016/j.jobe.2020.101346
IBNORCA (1987). CBH 87: Estructuras de hormigón. Norma Boliviana. Hormigón Armado. Instituto Boliviano de Normalización y Calidad (IBNORCA). Recuperado de: https://cadecocruz.org.bo/UserFiles/File/CBH_87.pdf
KADHIM, A. A. Y KADHIM, H. M. (2021). Experimental investigation of rubberized reinforced concrete continuous deep beams. Journal of King Saud University-Engineering Sciences [en prensa]. DOI: https://doi.org/10.1016/j.jksues.2021.03.001
KAISH, A. B. M. A., ODIMEGWU, T. C., ZAKARIA, I. Y ABOOD, M. M. (2021). Effects of different industrial waste materials as partial replacement of fine aggregate on strength and microstructure properties of concrete. Journal of Building Engineering, 35. DOI: https://doi.org/10.1016/j.jobe.2020.102092
KANGAVAR, M. E., LOKUGE, W., MANALO, A., KARUNASENA, W. Y FRIGIONE, M. (2022). Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement. Case Studies in Construction Materials, 16. DOI: https://doi.org/10.1016/j.cscm.2022.e00934
KARUNARATHNA, S., LINFORTH, S., KASHANI, A., LIU, X. Y NGO, T. (2021). Effect of recycled rubber aggregate size on fracture and other mechanical properties of structural concrete. Journal of Cleaner Production, 314. DOI: https://doi.org/10.1016/j.jclepro.2021.128230
LETELIER, V., BUSTAMANTE, M., MUÑOZ, P., RIVAS, S. Y ORTEGA, J. M. (2021). Evaluation of mortars with combined use of fine recycled aggregates and waste crumb rubber. Journal of Building Engineering, 43. DOI: https://doi.org/10.1016/j.jobe.2021.103226
LI, Y., ZHANG, X., WANG, R. Y LEI, Y. (2019). Performance enhancement of rubberised concrete via surface modification of rubber: A review. Construction and Building Materials, 227. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116691
MARQUES, B., ANTONIO, J., ALMEIDA, J., TADEU, A., DE BRITO, J., DIAS, S., PEDRO, F. Y SENA, J. D. (2020). Vibro-acoustic behaviour of polymer-based composite materials produced with rice husk and recycled rubber granules. Construction and Building Materials, 264. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120221
MOUSTAFA, A. Y ELGAWADY, M. (2015). Mechanical properties of high strength concrete with scrap tire rubber. Construction and Building Materials, 93, 249-256. DOI: https://doi.org/10.1016/j.conbuildmat.2015.05.115
NAJIM, K. B. Y HALL, M. R. (2013). Crumb rubber aggregate coatings/pre-treatments and their effects on interfacial bonding, air entrapment and fracture toughness in self-compacting rubberised concrete (SCRC). Materials and structures, 46(12), 2029-2043. DOI: https://doi.org/10.1617/s11527-013-0034-4
OLIVEIRA NETO, G. C. D., CHAVES, L. E. C., PINTO, L. F. R., SANTANA, J. C. C., AMORIM, M. P. C. Y RODRIGUES, M. J. F. (2019). Economic, environmental and social benefits of adoption of pyrolysis process of tires: A feasible and ecofriendly mode to reduce the impacts of scrap tires in Brazil. Sustainability, 11(7). DOI: https://doi.org/10.3390/su11072076
PACHECO-TORGAL, F., DING, Y. Y JALALI, S. (2012). Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): An overview. Construction and Building Materials, 30, 714-724. DOI: https://doi.org/10.1016/j.conbuildmat.2011.11.047
PHAM, N. P., TOUMI, A. Y TURATSINZE, A. (2019). Effect of an enhanced rubber-cement matrix interface on freeze-thaw resistance of the cement-based composite. Construction and Building Materials, 207, 528-534. DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.147
RASHID, K., YAZDANBAKHSH, A. Y REHMAN, M. (2019). Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material. Journal of Cleaner Production, 224, 396-410. DOI: https://doi.org/10.1016/j.jclepro.2019.03.197
REN, F., MO, J., WANG, Q. Y HO, J. C. M. (2022). Crumb rubber as partial replacement for fine aggregate in concrete: An overview. Construction and Building Materials, 343. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128049
ROSS, D. E. (2020). Use of waste tyres in a circular economy. Waste Management & Research, 38(1), 1-3. DOI: https://doi.org/10.1177/0734242X19895697
SALONI, PARVEEN, PHAM, T., LIM, Y. Y MALEKZADEH, M. (2021). Effect of pre-treatment methods of crumb rubber on strength, permeability and acid attack resistance of rubberised geopolymer concrete. Journal of Building Engineering, 41. DOI: https://doi.org/10.1016/j.jobe.2021.102448
SHAHJALAL, M., ISLAM, K., RAHMAN, J., AHMED, K. S., KARIM, M. R. Y BILLAH, A. M. (2021). Flexural response of fiber reinforced concrete beams with waste tires rubber and recycled aggregate. Journal of Cleaner Production, 278. DOI: https://doi.org/10.1016/j.jclepro.2020.123842
SILVA, L., MOUTA, J., COSTA, M. Y GOMES, L. (2019). Concreto com borracha de recauchutagem de pneu para uso em pavimentação de baixo tráfego. Matéria (Rio de Janeiro), 24. DOI: https://doi.org/10.1590/S1517-707620190002.0676
SU, H., YANG, J., LING, T., GHATAORA, G. Y DIRAR, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288-296. https://doi.org/10.1016/j.jclepro.2014.12.022
SWISSCONTACT (2020). Reciclaje de llantas, productos verdes con valor agregado. Swisscontact. Recuperado de: https://www.swisscontact.org/es/noticias/reciclaje-de-llantas-productos-verdes-con-valor-agregado
SYMEONIDES, D., LOIZIA, P. Y ZORPAS, A. (2019). Tire waste management system in Cyprus in the framework of circular economy strategy. Environmental Science and Pollution Research, 26(35), 35445-35460. DOI: https://doi.org/10.1007/s11356-019-05131-z
TAHA, M., EL-DIEB, A., ABD EL-WAHAB, M. Y ABDEL-HAMEED, M. (2008). Mechanical, fracture, and microstructural investigations of rubber concrete. Journal of materials in civil engineering, 20(10), 640-649. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640)
The Freedonia Group (2012). Global demand for aggregates to exceed 48 billion metric tons in 2015. Concrete construction. Recuperado de: https://www.concreteconstruction.net/business/global-demand-for-construction-aggregates-to-exceed-48-billion-metric-tons-in-2015_o
THOMAS, B. Y GUPTA, R. (2015). Long term behaviour of cement concrete containing discarded tire rubber. Journal of Cleaner Production, 102, 78-87. DOI: https://doi.org/10.1016/j.jclepro.2015.04.072
TRUDSØ, L. L., NIELSEN, M. B., HANSEN, S. F., SYBERG, K., KAMPMANN, K., KHAN, F. R. Y PALMQVIST, A. (2022). The need for environmental regulation of tires: Challenges and recommendations. Environmental Pollution, 311. DOI: https://doi.org/10.1016/j.envpol.2022.119974
VARGAS, J. (2017). Llantas en botaderos, una bomba de tiempo. Los tiempos. Recuperado de: https://www.lostiempos.com/actualidad/local/20170620/llantas-botaderos-bomba-tiempo
WU, Y. F., KAZMI, S. M. S., MUNIR, M. J., ZHOU, Y. Y XING, F. (2020). Effect of compression casting method on the compressive strength, elastic modulus and microstructure of rubber concrete. Journal of Cleaner Production, 264. DOI: https://doi.org/10.1016/j.jclepro.2020.121746
YOUSSF, O., MILLS, J. E. Y HASSANLI, R. (2016). Assessment of the mechanical performance of crumb rubber concrete. Construction and Building Materials, 125, 175-183. DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.040
ZHANG, W., GONG, S. Y ZHANG, J. (2018). Effect of rubber particles and steel fibers on frost resistance of roller compacted concrete in potassium acetate solution. Construction and Building Materials, 187, 752-759. DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.244
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Luz Adriana Fernandez-Torrez, Joaquin Humberto Aquino-Rocha, Nahúm Gamalier Cayo-Chileno
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The content of articles which are published in each edition of Habitat Sustentable, is the exclusive responsibility of the author(s) and does not necessarily represent the thinking or compromise the opinion of University of the Bio-Bio.
The author(s) conserve their copyright and guarantee to the journal, the right of first publication of their work. This will simultaneously be subject to the Creative Commons Recognition License CC BY-SA, which allows others to share-copy, transform or create new materials from this work for non-commercial purposes, as long as they recognize authorship and the first publication in this journal, and its new creations are under a license with the same terms.