Evaluation of the thermal conductivity and transmittance coefficient of earthen constructive elements

Authors

DOI:

https://doi.org/10.22320/07190700.2023.13.01.01

Keywords:

thermal insulation, walls, construction materials

Abstract

The aim of this work is to determine the thermal conductivity of different earthen constructive elements produced with materials typical of the central-eastern part of the Province of Santa Fe (Argentina), and to evaluate their suitability to be used in the construction of envelopes that comply with the thermal insulation requirements of the corresponding National Regulations. For this purpose, test specimens were made following the different earth construction techniques used in the region (compressed earth block, adobe, rammed earth (tapia), wattle and daub (quincha), and plaster), and their thermal conductivity coefficient was measured, with which the thermal transmittance of different earth construction packages was calculated. The results obtained indicate that the earth construction techniques evaluated show, in all cases, a better thermal performance than traditional solid ceramic brick or concrete block walls, with wattle and daub being the technique with the highest thermal insulation capacity.

Downloads

Download data is not yet available.

Author Biographies

Santiago Pedro Cabrera, Universidad Tecnológica Nacional, Santa Fe, Argentina.

PhD in Engineering, Industrial Mention.
Researcher, Research and Development Group on Earth Construction Techniques, Santa Fe Regional Faculty.

Anabela Guilarducci, Universidad Tecnológica Nacional, Santa Fe, Argentina.

PhD in Chemistry.
Researcher, Research and Development Center for Construction and Housing, Santa Fe Regional Faculty.

Dianela González, Universidad Tecnológica Nacional, Santa Fe, Argentina.

Civil Engineering student.
Researcher, Research and Development Center for Construction and Housing, Santa Fe Regional School.

Mariano Suarez, Universidad Tecnológica Nacional, Santa Fe, Argentina.

Civil Engineer.
Researcher, Research and Development Center for Construction and Housing, National Technological University, Santa Fe Regional Faculty.

References

BALTER, J., GANEM, C. & BAREA, G. (2020). Mejoras en el desempeño energético de edificios en verano mediante la integración de envolventes ventiladas en fachadas norte y cubiertas. El caso de Mendoza, Argentina. Hábitat Sustentable, 10(2), 94–105. DOI: https://doi.org/10.22320/07190700.2020.10.02.07

CABRERA CÓRDOVA, C. (2019). Transmitancia Térmica de Sistemas Constructivos en Tierra [Universidad de Azuay]. In Proyecto Final de Arquitectura. Recuperado de: http://dspace.uazuay.edu.ec/handle/datos/9268

CABRERA, S., ELERT, K., GUILARDUCCI, A. & MARGASIN, A. (2022). The effect of local pozzolans and lime additions on the miner-alogical, physical and mechanical properties of compressed earth blocks in Argentina. Revista de La Construccion, 21(2), 248–263. DOI: https://doi.org/10.7764/RDLC.21.2.248

CAGNON, H., AUBERT, J. E., COUTAND, C. & MAGNIONT, C. (2014). Hygrothermal properties of earth bricks. Energy and Buildings, 80, 208–217. DOI: https://doi.org/https://doi.org/10.1016/j.enbuild.2014.05.024

COSTANTINI ROMERO, B. & FRANCISCA, F. (2022). Construcción con bloques de suelo cemento como alternativa sostenible para envolvente edilicia. Hábitat Sustentable, 12, 114–125. DOI: https://doi.org/https://doi.org/10.22320/07190700.2022.12.01.08

COSTANTINI ROMERO, B., FRANCISCA, F. & GIOMI, I. (2021). Hygrothermal properties of soil–cement construction materials. Construction and Building Materials, 313(October), 1–9. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125518

CUITIÑO, M. G., ESTEVES, A., MALDONADO, G. & ROTONDARO, R. (2015). Análisis de la transmitancia térmica y resistencia al impacto de los muros de quincha. Informes de La Construccion, 67(537). DOI: https://doi.org/10.3989/ic.12.082

CUITIÑO, M. G., ROTONDARO, R. & ESTEVES, A. (2020). Análisis comparativo de aspectos térmicos y resistencias mecánicas de los materiales y los elementos de la construcción con tierra. Revista de Arquitectura, 22(1), 138–151. Recuperado de: https://editorial.ucatolica.edu.co/index.php/RevArq/article/view/2348

DORADO, P., CABRERA, S. & ROLÓN, G. (2022). Contemporary difficulties and challenges for the implementation and development of compressed earth block building technology in Argentina. Journal of Building Engineering, 46, 103748. DOI: https://doi.org/10.1016/j.jobe.2021.103748

EL FGAIER, F., LAFHAJ, Z., CHAPISEAU, C. & ANTCZAK, E. (2016). Effect of sorption capacity on thermo-mechanical properties of unfired clay bricks. Journal of Building Engineering, 6, 86–92. DOI: https://doi.org/10.1016/j.jobe.2016.02.011

ESTEVES, J. M. & CUITIÑO, M. G. (2020). El sistema constructivo de la quincha en zonas rurales del Norte de Mendoza (Argentina). Estoa, 9(17), 93–102. DOI: https://doi.org/10.18537/est.v009.n017.a08

FABBRI, A., MOREL, J.-C., AUBERT, J.-E., BUI, Q.-B., GALLIPOLI, D. & REDDY, B. V. V. (2022). Testing and Characterisation of Earth-based Building Materials and Elements. State-of-the-Art Report of the RILEM TC 274-TCE. RILEM. DOI: https://doi.org/https://doi.org/10.1007/978-3-030-83297-1

FERNANDES, J., PEIXOTO, M., MATEUS, R. & GERVÁSIO, H. (2019). Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks. Journal of Cleaner Production, 241. DOI: https://doi.org/10.1016/j.jclepro.2019.118286

IRAM (2002). Norma IRAM 1860: Materiales aislantes térmicos. Método de ensayo de las propiedades de transmisión térmica en régimen estacionario, mediante el aparato de medición del flujo de calor.

IRAM (2010). Norma IRAM 11601: Aislamiento térmico de edificios. Métodos de cálculo. Propiedades térmicas de los componentes y elementos de construcción en régimen estacionario.

IRAM (2010). Norma IRAM 11605: Acondicionamiento térmico de edificios. Condiciones de habitabilidad en edificios. Valores máximos de transmitancia térmica en cerramientos opacos.

IRAM (2012). Norma IRAM 11603: Acondicionamiento térmico de edificios. Clasificación bioambiental de la República Argentina.

IRAM (2017). Norma IRAM 11900: Prestaciones energéticas en viviendas. Método de cálculo y etiquetado de eficiencia energética.

LABOREL-PRÉNERON, A., MAGNIONT, C. & AUBERT, J. E. (2018). Hygrothermal properties of unfired earth bricks: Effect of barley straw, hemp shiv and corn cob addition. Energy and Buildings, 178, 265–278. DOI: https://doi.org/https://doi.org/10.1016/j.enbuild.2018.08.021

MILLARD, P. & AUBERT, J. E. (2014). Effects of the anisotropy of extruded earth bricks on their hygrothermal properties. Construction and Building Materials, 63, 56–61. DOI: https://doi.org/https://doi.org/10.1016/j.conbuildmat.2014.04.001

MINKE, G. (2005). Manual de construcción en tierra. La tierra como material de construcción y su aplicación en la arquitectura actual. Fin de siglo.

MOSQUERA ARANCIBIA, P. (2013). Medida de la conductividad térmica con el método de la aguja térmica, basado en la fuente lineal de calor transitorio para su aplicación en los cerramientos de adobes y bloques de tierra comprimida. [Tesis de doctorado inédita] Universidad Politécnica de Madrid.

NAVACERRADA, M. Á., DE LA PRIDA, D., SESMERO, A., PEDRERO, A., GÓMEZ, T. & FERNÁNDEZ-MORALES, P. (2021). Comportamiento acústico y térmico de materiales basados en fibras naturales para la eficiencia energética en edificación. Informes de La Construcción, 73(561), e373. DOI: https://doi.org/10.3989/ic74558

OUEDRAOGO, K. A. J., AUBERT, J.-E. E., TRIBOUT, C., ESCADEILLAS, G. & ESCADEILAS, G. (2020). Is stabilization of earth bricks using low cement or lime contents relevant? Construction and Building Materials, 236, 117578. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117578

PACHECO-TORGAL, F. & JALALI, S. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and Building Materials, 29, 512–519. DOI: https://doi.org/10.1016/j.conbuildmat.2011.10.054

ROTONDARO, R. (2018). Construir con tierra: Tecnología y arquitectura del siglo XX. Notas CPAU. Recuperado de: https://www.revistanotas.org/revistas/41/2295-construir-con-tierra-tecnologia-y-arquitectura-del-siglo-xxi

SAIDI, M., SOUKAINA, C., BELKACEM, Z. & SEIDIKI, E. (2018). Stabilization effects on the thermal conductivity and sorption behavior of earth bricks. Construction and Building Materials, 167, 566–577. DOI: https://doi.org/https://doi.org/10.1016/j.conbuildmat.2018.02.063

TEPALE GAMBOA, B. A. (2016). La tierra vertida compactada como sistema tecnificado para la autoconstrucción de vivienda en zonas rurales [Universidad Nacionall Autónoma de México]. Recuperado de: https://repositorio.unam.mx/contenidos/76043

VOLHARD, F. (2016). Construire en terre allegee. Acte Sud - Craterre.

WIESER, M., ONNIS, S. & MELI, G. (2018). Conductividad térmica de la tierra alivianada con fibras naturales en paneles de quincha. In R. PROTERRA (Ed.), Actas del 18° Seminario Iberoamericano de Arquitectura y Construcción con Tierra (pp. 1–10). Recuperado de: https://files.pucp.education/facultad/arquitectura/2019/11/27173426/2018-SIACOT-Wieser-Onnis-Meli.pdf

Published

2023-06-30

How to Cite

Cabrera, S. P., Guilarducci, A., González, D., & Suarez, M. (2023). Evaluation of the thermal conductivity and transmittance coefficient of earthen constructive elements. Sustainable Habitat, 13(1), 08–19. https://doi.org/10.22320/07190700.2023.13.01.01

Issue

Section

Artículos

Most read articles by the same author(s)