Future effectiveness of passive house design strategies

Authors

DOI:

https://doi.org/10.22320/07190700.2023.13.01.03

Keywords:

climate change, sustainable architecture, single-family houses

Abstract

Passive architectural design strategies have been an effective response to the energy crisis of the 20th century. In temperate climates, their integration results in thermal behaviors that combine indoor comfort and energy efficiency. However, projected future climate change scenarios will not offer the same performances, resulting in such strategies being less effective. The objective of this work is to quantify the relative change in the effectiveness of passive design strategies in dwellings for arid temperate-cold climates (Bwk), taking the city of Mendoza (Argentina) as an example. Regarding future climate projections for warm arid climates (Bwh), using the CMIP5’s RCP8.5 scenario, equivalent to the IPCC’s CMIP6 SSP85 scenario, the results show a 20% decrease in the number of hours in annual comfort, with a 24% increase in the need for passive summer strategies.

Downloads

Download data is not yet available.

Author Biographies

Gustavo Javier Barea-Paci, Centro Científico Tecnológico CONICET, Mendoza, Argentina.

PhD in Science, Renewable Energy Area.
Post-Doctoral Fellow, Adjunct Researcher, Institute of Environment, Habitat and Energy.

Carolina Ganem-Karlen, Centro Científico Tecnológico CONICET, Mendoza, Argentina.

Post-Doctorate in Architecture.
Adjunct Researcher, Full Time, Institute of Environment, Habitat and Energy.

Maria Cecilia Molina, Centro Científico Tecnológico CONICET, Mendoza, Arquitecturas.

Master in Sustainable Architecture.
Research Assistant, Institute of Environment, Habitat and Energy.

Pia Mateo, Centro Científico Tecnológico CONICET, Mendoza, Argentina.

Architect.
Research Assistant, Scientific and Technological Center (CCT), Institute of Environment, Habitat and Energy (INAHE).

References

AGOSTA, E., ARANEO, D., CAMILLONI, I., CARRIL, A., DOYLE, M., FRUMENTO, O., NUÑEZ, M., ORTIZ DE ZÁRATE, M., PENALBA, O., RUSTICUCCI, M., SAULO C. & SOLMAN. S. (2015). Tendencias y Proyecciones: Centro de Investigaciones del Mar y la Atmósfera (CIMA). En Tercera Comunicación Nacional sobre Cambio Climático. Secretaría de Ambiente y Desarrollo Sustentable de la Nación.

BAREA, G., MERCADO, M. V., FILIPPÍN, C., MONTEOLIVA, J. M. & VILLALBA, A. (2022). New paradigms in bioclimatic design toward climatic change in arid environments. Energy and Buildings, 266, 112100. DOI: https://doi.org/10.1016/j.enbuild.2022.112100

Base de Datos Climáticos. (2022). 3ra Comunicación Nacional de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático (3CN CIMA). Recuperado de: http://3cn.cima.fcen.uba.ar/

BHAMARE, D. K., RATHOD, M. K. & BANERJEE, J. (2019). Passive cooling techniques for building and their applicability in different climatic zones—The state of art. Energy and Buildings, 198, 467–490. DOI: https://doi.org/10.1016/j.enbuild.2019.06.023

BI, D., DIX, M., MARSLAND, S., O’FARRELL, S., SULLIVAN, A., BODMAN, R., LAW, R., HARMAN, I., SRBINOVSKY, J., RASHID, H. A., DOBROHOTOFF, P., MACKALLAH, C., YAN, H., HIRST, A., SAVITA, A., DIAS, F. B., WOODHOUSE, M., FIEDLER, R. & HEERDEGEN, A. (2020). Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. Journal of Southern Hemisphere Earth System Science, 70(1), 225–251. DOI: https://doi.org/10.1071/es19040

BRAGER, G. S. & DE DEAR, R. J. (1998). Thermal adaptation in the built environment: a literature review. Energy and Buildings, 27(1), 83–96. DOI: https://doi.org/10.1016/s0378-7788(97)00053-4

CHALMERS, P. (2015). Cambio climático: Implicaciones para los Edificios. Hallazgos claves del Quinto informe de evaluación del IPCC [Revisión del Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático]. University of Cambridge.

CLARKE, J., STRACHAN, P. & PERNOT, C. E. E. (1993). Approach to the calibration of building energy simulation models. En: ASHRAE Transactions 99, 13.

CORONATO, T., CARRIL, A. F., ZANINELLI, P. G., GILES, J., RUSCICA, R., FALCO, M., SÖRENSSON, A. A., FITA, L., LI, L. Z. X. & MENÉNDEZ, C. G. (2020). The impact of soil moisture–atmosphere coupling on daily maximum surface temperatures in Southeastern South America. Climate Dynamics, 55, 2543-2556. DOI: https://doi.org/10.1007/s00382-020-05399-9

ELIAS, S. A. (2017). Editor’s Note. En: Reference Module in Earth Systems and Environmental Sciences. Encyclopedia of the Anthropocene, 1, 227–231. DOI: https://doi.org/10.1016/B978-0-12-809665-9.05958-9

FALCO, M., CARRIL, A. F., MENÉNDEZ, C. G., ZANINELLI, P. G. & LI, L. Z. X. (2019). Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Climate Dynamics, 52, 4771–4786. DOI: https://doi.org/10.1007/s00382-018-4412-z

FLORES-LARSEN, S., FILIPPÍN, C. & BAREA, G. (2019). Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina. Energy and Buildings, 184, 216–229. DOI: https://doi.org/10.1016/j.enbuild.2018.12.015

FLORES-LARSEN, S. & FILIPPÍN, C. (2021). Energy efficiency, thermal resilience, and health during extreme heat events in low-income housing in Argentina. Energy and Buildings, 231, 110576. DOI: https://doi.org/10.1016/j.enbuild.2020.110576

GANEM, C. & BAREA, G. (2021). A methodology for assessing the impact of climate change on building energy consumption. En: Urban Microclimate Modelling for Comfort and Energy Studies. Editorial Springer. ISBN 978-3-030-65420-7

JENTSCH, M. F., BAHAJ, A. S. & JAMES, P. A. B. (2008). Climate change future proofing of buildings—Generation and assessment of building simulation weather files. Energy and Buildings, 40(12), 2148–2168. DOI: https://doi.org/10.1016/j.enbuild.2008.06.005

KOŠIR, M. & PAJEK, L. (2017). BcChart v2.0 – A Tool for Bioclimatic Potential Evaluation. Proceedings of SWC2017/SHC2017.

KOŠIR, M. (2018). BcChart v2.1. University of Ljubljana, Faculty of Civil and Geodetic Engineering.

KOŠIR, M. (2019). Climate Change and Its Implications for Bioclimatic Design. En: Climate Adaptability of Buildings , 197–236. Springer International Publishing.

KOTTEK, M., GRIESER, J., BECK, C., RUDOLF, B. & RUBEL, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. DOI: https://doi.org/10.1127/0941-2948/2006/0130

LACAZE, L., ZAMPELLI, R., ESTAYNO, S. & BRAUDE, H. (2021). Tecnologías para la eficiencia energética residencial y la reducción de emisiones de gases de efecto invernadero. Criterios de política pública para su priorización y marco de propuestas para su desarrollo y adopción en el contexto argentino. Documentos de Trabajo del CCE N° 14. Consejo para el Cambio Estructural - Ministerio de Desarrollo Productivo de la Nación.

LI, D. H. W., YANG, L. & LAM, J. C. (2012). Impact of climate change on energy use in the built environment in different climate zones – A review. Energy, 42(1), 103–112. DOI: https://doi.org/10.1016/j.energy.2012.03.044

LÓPEZ-FRANCA, N., ZANINELLI, P. G., CARRIL, A. F., MENÉNDEZ, C. G. & SÁNCHEZ, E. (2016). Changes in temperature extremes for 21st century scenarios over South America derived from a multi-model ensemble of regional climate models. Climate Research, 68(2–3), 151–167. DOI: https://doi.org/10.3354/cr01393

LORENZ, R., PITMAN, A. J., DONAT, M. G., HIRSCH, A. L., KALA, J., KOWALCZYK, E. A., LAW, R. M. & SRBINOVSKY, J. (2014). Representation of climate extreme indices in the ACCESS1.3b coupled atmosphere–land surface model. Geoscientific Model Development, 7(2), 545–567. DOI: https://doi.org/10.5194/gmd-7-545-2014

Naciones Unidas (ONU), Acuerdo de París de la Convención Marco de las Naciones Unidas sobre el Cambio Climático (UNFCCC), 12 Diciembre 2015.

O’NEILL, B. C., TEBALDI, C., VAN VUUREN, D. P., EYRING, V., FRIEDLINGSTEIN, P., HURTT, G., KNUTTI, R., KRIEGLER, E., LAMARQUE, J.-F., LOWE, J., MEEHL, G. A., MOSS, R., RIAHI, K. & SANDERSON, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482. DOI: https://doi.org/10.5194/gmd-9-3461-2016

OLGYAY, V. (1963). Design with Climate: Bioclimatic Approach to Architectural Regionalism. Princeton University Press.

RUBIO-BELLIDO, C., PULIDO-ARCAS, J. A. & URETA-GRAGERA, M. (2015). Aplicabilidad de estrategias genéricas de diseño pasivo en edificaciones bajo la influencia del cambio climático en Concepción y Santiago, Chile. Revista Hábitat Sustentable, 5(2), 33–41. Recuperado de: https://revistas.ubiobio.cl/index.php/RHS/article/view/2106

RUÍZ-GONZÁLEZ, M. A. & MACK-VERGARA, Y. L. (2022). Indicadores de resiliencia y sostenibilidad para la vivienda urbana panameña frente al cambio climático. Revista Hábitat Sustentable, 12(2), 08–25. DOI: https://doi.org/10.22320/07190700.2022.12.02.01

SÁNCHEZ-GARCÍA, D., RUBIO-BELLIDO, C., MARRERO MELÉNDEZ, M., GUEVARA-GARCÍA, F. J. & CANIVELL, J. (2017). El control adaptativo en instalaciones existentes y su potencial en el contexto del cambio climático. Revista Hábitat Sustentable, 7(2), 06–17. DOI: https://doi.org/10.22320/07190700.2017.07.02.01

Servicio Meteorológico Nacional Argentino. (2022). Informe especial n°3 por ola de calor / altas temperaturas temporada 2022-2023.

Servicio Meteorológico Nacional Argentino. (2023a). Informe especial n°5 por ola de calor / altas temperaturas temporada 2022-2023.

Servicio Meteorológico Nacional Argentino. (2023b). Informe especial n°8 por ola de calor / altas temperaturas temporada 2022-2023.

STONE, K. A., MORGENSTERN, O., KAROLY, D. J., KLEKOCIUK, A. R., FRENCH, W. J., ABRAHAM, N. L. & SCHOFIELD, R. (2016). Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere. Atmospheric Chemistry and Physics, 16(4), 2401–2415. DOI: https://doi.org/10.5194/acp-16-2401-2016

V., R. (2020). Una apuesta por la renovación urbana. Ediciones EL PAÍS S.L. [29 septiembre]. Recuperado de: https://elpais.com/economia/2020-09-29/una-apuesta-por-la-renovacion-urbana.html

ZIEHN, T., CHAMBERLAIN, M. A., LAW, R. M., LENTON, A., BODMAN, R. W., DIX, M., STEVENS, L., WANG, Y.-P. & SRBINOVSKY, J. (2020). The Australian Earth System Model: ACCESS-ESM1.5. Journal of Southern Hemisphere Earth System Science, 70(1), 193–214. DOI: https://doi.org/10.1071/es19035

Published

2023-06-30

How to Cite

Barea-Paci, G. J., Ganem-Karlen, C. ., Molina, M. C., & Mateo, P. (2023). Future effectiveness of passive house design strategies . Sustainable Habitat, 13(1), 30–41. https://doi.org/10.22320/07190700.2023.13.01.03

Issue

Section

Artículos