Thermal perception of users in the vernacular housing of the Uro community of lake titicaca in Peru
DOI:
https://doi.org/10.22320/07190700.2024.14.01.02Keywords:
vernacular housing, thermal comfort, thermal perception, climate conditionsAbstract
The objective of this work was to conduct a field study to determine the thermal perception of users of vernacular housing in the cold climate of the Peruvian High Andean region. The units analyzed were houses built by the Uro community using “totora” (bulrush reeds). The field study characterized the dwelling’s thermal performance, determined body surface area and clothing insulation, assessed thermal sensation, preference, and acceptability, determined personal adjustment strategies, and calculated the neutral temperature. Seventy-eight valid surveys were collected in two periods (summer and winter). The results reveal that the dwelling’s users are uncomfortable. The preference points to warmer and drier environments. The neutral temperature was 19.62 ºC in summer and 21.98 ºC in winter. However, the inhabitants had the expectation that the environment could be thermally improved with more insulation.
Downloads
References
ABDOLLAHZADEH, S. M., HEIDARI, S., y EINIFAR, A. (2023). Evaluating thermal comfort and neutral temperature in residential apartments in hot and dry climate: A case study in Shiraz, Iran. Journal of Building Engineering, 76. https://doi.org/10.1016/j.jobe.2023.107161
ANSI/ASHRAE 55. (2017). ANSI/ASHRAE Standard 55-2017: Thermal Environmental Conditions for Human Occupancy. ASHRAE Inc., 2017, 66. https://doi.org/ISSN 1041-2336
AZA-MEDINA, L. C., PALUMBO, M., LACASTA, A. M., y GONZÁLEZ-LEZCANO, R. A. (2023). Characterization of the thermal behavior, mechanical resistance, and reaction to fire of totora (Schoenoplectus californicus (C.A. Mey.) Sojak) panels and their potential use as a sustainable construction material. Journal of Building Engineering, 69, 105984. https://doi.org/10.1016/j.jobe.2023.105984
CAMUFFO, D. (2019). Temperature: A Key Variable in Conservation and Thermal Comfort. Microclimate for Cultural Heritage, (3)15–42. https://doi.org/10.1016/b978-0-444-64106-9.00002-x
CHANG, S., HE, W., YAN, H., YANG, L., y SONG, C. (2021). Influences of vernacular building spaces on human thermal comfort in China’s arid climate areas. Energy and Buildings, 244. https://doi.org/10.1016/j.enbuild.2021.110978
COSTA-CARRAPIÇO, I., GONZÁLEZ, J. N., RASLAN, R., y SÁNCHEZ-GUEVARA, C. (2022). Understanding the challenges of determining thermal comfort in vernacular dwellings: A meta-analysis. Journal of Cultural Heritage, 58, 57–73. https://doi.org/10.1016/j.culher.2022.09.019
FANGER, P. (1970). Thermal Comfort, Analysis and Applications in Environmental Engineering: Vol. I. En McGraw-Hill Book Company, (1ª ed., Vol. 1). R.E. Krieger Pub. Co. https://www.abebooks.com/9780070199156/Thermal-comfort-analysis-applications-environmental-0070199159/plp
GRIFFITHS, I. D. (1991). Thermal comfort in buildings with passive solar features: field studies: Vol. I (Commission of the European Communities, Ed.; 1 Volume). Commission of the European Communities.
HIDALGO-CORDERO, J. F., y AZA-MEDINA, L. C. (2023). Analysis of the thermal performance of elements made with totora using different production processes. Journal of Building Engineering, 65. https://doi.org/10.1016/j.jobe.2022.105777
HIDALGO-CORDERO, J. F., NĚMEC, M., CASTRO, P. H., HÁJKOVÁ, K., CASTRO, A. O., y HÝSEK, Š. (2023). Macromolecular Composition of Totora (Schoenoplectus californicus. C.A. Mey, Sojak) Stem and Its Correlation with Stem Mechanical Properties. Journal of Natural Fibers, 20(2). https://doi.org/10.1080/15440478.2023.2282049
HUMPHREYS, M. A., y NICOL, J. F. (1970). An investigation into thermal comfort of office workers. Journal of the Institute of Heating and Ventilating Engineers, 38, 181–189.
HÝSKOVÁ, P., GAFF, M., HIDALGO-CORDERO, J. F., y HÝSEK, Š. (2020). Composite materials from totora (Schoenoplectus californicus. C.A. Mey, Sojak): Is it worth it? Composite Structures, 232. https://doi.org/10.1016/j.compstruct.2019.111572
ISO 7726 (1998). Ergonomics of the Thermal Environment - Instruments for Measuring Physical Quantities, 1998 Ergonomics. https://www.iso.org/standard/14562.html
ISO 7730. (2005). ISO 7730 - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. 1–28. https://www.iso.org/standard/39155.html
ISO 10551. (1995). ISO 10551 - Ergonomics of the thermal environment - Assessment of the influence of the thermal environment using subjective judgment scales. https://cdn.standards.iteh.ai/samples/18636/dc297a9d7c6245d985cf8dd48e084fb5/ISO-10551-1995.pdf
MALIK, J., y BARDHAN, R. (2022). Thermal comfort perception in naturally ventilated affordable housing of India. Advances in Building Energy Research, 16(3), 385–413. https://doi.org/10.1080/17512549.2021.1907224
MINO-RODRIGUEZ, I., KOROLIJA, I., y ALTAMIRANO, H. (2018). Thermal comfort in dwellings in the subtropical highlands Case study in the Ecuadorian Andes. [Archivo PDF] https://www.researchgate.net/publication/325012806_Thermal_comfort_in_dwellings_in_the_subtropical_highlands_-_Case_study_in_the_Ecuadorian_Andes
MOLINA, J. R., LEFEBVRE, G., y GÓMEZ, M. M. (2023). Study of the thermal comfort and the energy required to achieve it for housing modules in the environment of a high Andean rural area in Peru. Energy and Buildings, 281. https://doi.org/10.1016/j.enbuild.2022.112757
NIE, Q., ZHAO, S., ZHANG, Q., LIU, P., y YU, Z. (2019). An investigation on the climate-responsive design strategies of vernacular dwellings in Khams. Building and Environment, 161. https://doi.org/10.1016/j.buildenv.2019.106248
QIAO, Y., YANG, L., BAO, J., LIU, Y., y LIU, J. (2019). Reduced-scale experiments on the thermal performance of phase change material wallboard in different climate conditions. Building and Environment, 160. https://doi.org/10.1016/j.buildenv.2019.106191
RIJAL, H. B., YOSHIDA, H., y UMEMIYA, N. (2010). Seasonal and regional differences in neutral temperatures in Nepalese traditional vernacular houses. Building and Environment, 45(12), 2743–2753. https://doi.org/10.1016/j.buildenv.2010.06.002
STEFFENS, F., STEFFENS, H., y OLIVEIRA, F. R. (2017). Applications of Natural Fibers on Architecture. Procedia Engineering, 200, 317–324. https://doi.org/10.1016/j.proeng.2017.07.045
WIDERA, B. (2021). Comparative analysis of user comfort and thermal performance of six types of vernacular dwellings as the first step towards climate resilient, sustainable and bioclimatic architecture in western sub-Saharan Africa. Renewable and Sustainable Energy Reviews, 140. [Archivo PDF] https://doi.org/10.1016/j.rser.2021.110736
XIONG, Y., LIU, J., y KIM, J. (2019). Understanding differences in thermal comfort between urban and rural residents in hot summer and cold winter climate. Building and Environment, 165. [Archivo PDF] https://doi.org/10.1016/j.buildenv.2019.106393
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Diana Karen Pari-Quispe, Joára Cronemberger-Ribeiro Silva, Samuel Huaquisto-Cáceres, Hugo Anselmo Ccama-Condori, Leyda Cinthia Aza-Medina
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The content of articles which are published in each edition of Habitat Sustentable, is the exclusive responsibility of the author(s) and does not necessarily represent the thinking or compromise the opinion of University of the Bio-Bio.
The author(s) conserve their copyright and guarantee to the journal, the right of first publication of their work. This will simultaneously be subject to the Creative Commons Recognition License CC BY-SA, which allows others to share-copy, transform or create new materials from this work for non-commercial purposes, as long as they recognize authorship and the first publication in this journal, and its new creations are under a license with the same terms.