Influence of solar shading design parameters on energy efficiency in cold arid temperate climates, Mendoza, Argentina

Authors

DOI:

https://doi.org/10.22320/07190700.2024.14.02.10

Keywords:

solar shading, parametric simulation, energy efficiency, cold temperate arid climate

Abstract

The construction sector has a significant impact on global energy consumption and carbon emissions. Despite technological and material advances, the energy performance of buildings primarily depends on architectural design decisions. This study evaluates how solar protection system configurations affect energy consumption for heating, cooling, and lighting in a study box located in an arid temperate cold climate. The results show that the window-to-wall ratio (WWR) and absolute orientation are key factors in energy consumption. A 16% increase in cooling consumption and a 13% increase in lighting were observed with the progressive increase of the WWR. Additionally, heating demand increased by approximately 18% based on orientation. These findings highlight the importance of adjusting design variables to optimize the energy efficiency of buildings.

Downloads

Download data is not yet available.

Author Biographies

Alicia Betman, National Council for Scientific and Technical Research (CONICET), Mendoza, Argentina.

Architect
Doctoral Fellow of the Institute of Environment, Habitat and Energy (INAHE)

Julieta Balter, National Council for Scientific and Technical Research (CONICET), Mendoza, Argentina.

Doctor in Architecture
Assistant Researcher of the Institute of Environment, Habitat and Energy (INAHE)

Stella Maris Donato, National Council for Scientific and Technical Research (CONICET), Mendoza, Argentina.

Doctor in Mathematical Sciences
Assistant Professional of the Institute of Environment, Habitat and Energy (INAHE)

Carolina Ganem, National Council for Scientific and Technical Research (CONICET), Mendoza, Argentina.

Doctor in Architecture
Independent Researcher at the Institute of Environment, Habitat and Energy (INAHE).

References

ALANÍS-NAVARRO, J. A., CASARRUBIAS-BAHENA, D., ALANÍS-CANTÚ, R., y LAVÍN-DELGADO, J. E. (2017). Correlación y regresión lineal de variables climatológicas para el diseño de ecotecnologías y arquitectura bioclimática. Revista de Arquitectura y Diseño, 1(2), 1–12. https://www.ecorfan.org/spain/researchjournals/Arquitectura_y_Diseno/vol1num2/Revista_de_Arquitectura_y_Dise%C3%B1o_V1_N2_1.pdf

BETMAN, A., BALTER, J., HONGN, M., y GANEM, C. (2023). Estudio paramétrico de sistemas de parasoles para reducción del consumo energético en climas con alta heliofanía. Avances en Energías Renovables y Medio Ambiente, 27, 45–55. https://portalderevistas.unsa.edu.ar/index.php/averma/article/view/4592

BUSTAMANTE, W., y ENCINAS, F. (2012). Parámetros de diseño y desempeño energético en edificios de clima mediterráneo. ARQ (Santiago), 82, 116–119. https://doi.org/10.4067/S0717-69962012000300020

DABBAGH, M., y KRARTI, M. (2022). Experimental evaluation of the performance for switchable insulated shading systems. Energy and Buildings, 256, 111753. https://doi.org/10.1016/j.enbuild.2021.111753

Dirección Nacional de Escenarios y Planeamiento Energético. (2019). Escenarios Energéticos 2030. Buenos Aires: Secretaría de Energía, Ministerio de Hacienda. http://www.energia.gob.ar/contenidos/archivos/Reorganizacion/planeamiento/2019-11-14_SsPESGE_Documento_Escenarios_Energeticos_2030_ed2019_pub.pdf

DOORNIK, J. A., y HANSEN, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics, 70(s1), 927–939. https://doi.org/10.1111/j.1468-0084.2008.00537.x

GHOSH, A., y NEOGI, S. (2018). Effect of fenestration geometrical factors on building energy consumption and performance evaluation of a new external solar shading device in warm and humid climatic condition. Solar Energy, 169, 94–104. https://doi.org/10.1016/j.solener.2018.04.025

HENZE, N., y ZIRKLER, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics - Theory and Methods, 19(10), 3595–3617. https://doi.org/10.1080/03610929008830400

International Energy Agency [IEA]. (2021). Building Envelopes. IEA, Paris. https://www.iea.org/reports/building-envelopes

IPCC. (2023). Statement on the ‘Climate Change 2023: Synthesis Report’, 20 March 2023. https://reliefweb.int/report/world/statement-climate-change-2023-synthesis-report-20-march-2023?gad_source=1

KAASALAINEN, T., MÄKINEN, A., LEHTINEN, T., MOISIO, M., y VINHA, J. (2020). Architectural window design and energy efficiency: Impacts on heating, cooling and lighting needs in Finnish climates. Journal of Building Engineering, 27, 100996. https://doi.org/10.1016/j.jobe.2019.100996

KHIDMAT, R. P., FUKUDA, H., KUSTIANI, y WIBOWO, A. P. (2021). Designing louvers toward optimum daylight performance in Indonesia: a parametric study. IOP Conference Series: Earth and Environmental Science, 907(1), 012012. https://doi.org/10.1088/1755-1315/907/1/012012

KIRIMTAT, A., KOYUNBABA, B. K., CHATZIKONSTANTINOU, I., y SARIYILDIZ, S. (2016). Review of simulation modeling for shading devices in buildings. Renewable and Sustainable Energy Reviews, 53, 23–49. https://doi.org/10.1016/j.rser.2015.08.020

KOÇ, S. G., y MAÇKA KALFA, S. (2021). The effects of shading devices on office building energy performance in Mediterranean climate regions. Journal of Building Engineering, 44, 102653. https://doi.org/10.1016/j.jobe.2021.102653

MANGKUTO, R. A., KOERNIAWAN, M. D., APRILIYANTHI, S. R., LUBIS, I. H., ATTHAILLAH, HENSEN, J. L. M., y PARAMITA, B. (2021). Design Optimisation of Fixed and Adaptive Shading Devices on Four Façade Orientations of a High-Rise Office Building in the Tropics. Buildings, 12(1), 25. https://doi.org/10.3390/buildings12010025

MARDIA, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530. https://doi.org/10.2307/2334770

NAZARI, S., KESHAVARZ MIRZA MOHAMMADI, P., y SAREH, P. (2023). A multi‐objective optimization approach to designing window and shading systems considering building energy consumption and occupant comfort. Engineering Reports, 5(10), 1–39. https://doi.org/10.1002/eng2.12726

Servicio Meteorológico Nacional. (2023). Estado del clima en Argentina 2022. https://repositorio.smn.gob.ar/handle/20.500.12160/2378#:~:text=El%202022%20fue%20levemente%20m%C3%A1s,oto%C3%B1o%20e%20inicio%20del%20invierno.

SPEARMAN, C. (1961). The proof and measurement of association between two things. In J. J. Jenkins & D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp. 45–58). Appleton-Century-Crofts.

ZOU, K. H., TUNCALI, K., y SILVERMAN, S. G. (2003). Correlation and simple linear regrSFlores-Larsension. Radiology, 227(3), 617-628. https://doi.org/10.1148/radiol.2273011499

Published

2024-12-29

How to Cite

Betman, A., Balter, J., Donato, S. M., & Ganem, C. (2024). Influence of solar shading design parameters on energy efficiency in cold arid temperate climates, Mendoza, Argentina. Sustainable Habitat, 14(2), 122–133. https://doi.org/10.22320/07190700.2024.14.02.10

Issue

Section

Artículos