Uso de materiais leves para a produção de concreto de baixa densidade: uma revisão da literatura
DOI:
https://doi.org/10.22320/07190700.2022.12.01.06Palavras-chave:
agregados leves, isolamento térmico, concreto de baixa densidade, resíduosResumo
Ao longo do século XX, a indústria da construção civil vem utilizando grandes quantidades de concreto, consequentemente, a demanda por agregados naturais tem aumentado, de modo que se tornou necessário neutralizar o uso destes. Neste contexto, o presente trabalho visa apresentar uma revisão da literatura sobre o uso de materiais leves para a produção de concreto de baixa densidade com isolamento térmico produzido principalmente com agregados leves. Nesta estrutura, foram analisados 52 artigos indexados entre 2017 e 2021 no banco de dados Scopus. Os resultados revelaram que, usando ceramsite de lodo como agregado, pode-se obter uma densidade de 1251 kg/m3 e, com agregados de argila expandida, é possível obter resistências à compressão de 17,7 a 66,1 MPa. Em conclusão, determinou-se que o uso de materiais leves na produção de concreto pode reduzir sua densidade, além de contribuir para a redução dos danos ao meio ambiente.
Downloads
Referências
AJEY KUMAR , V., KARTHIK , M. y MANGALA KESHAVA. (2020). Production of Recycled Plastic Coarse Aggregates and its Utilization in Concrete. International Journal of Emerging Trends in Engineering Research, 8(8), 4118 - 4122. DOI: https://doi.org/10.30534/ijeter/2020/14882020
AL-LAMI, M. y AL-SAADI, E. (2021). Las relaciones entre la resistencia a la compresión y la densidad del hormigón ligero de poliestireno y sus proporciones de componentes. Journal of Applied Engineering Science, 19(1), 175 - 185. DOI: https://doi.org/10.5937/jaes0-27471
ALQAHTANI, F., ABOTALEB, I. y ELMENSHAWY, M. (2021). Life cycle cost analysis of lightweight green concrete utilizing recycled plastic aggregates. Journal of Building Engineering, 40. DOI: https://doi.org/10.1016/j.jobe.2021.102670
ALQAHTANI, F. y ZAFAR, I. (2020). Characterization of processed lightweight aggregate and its effect on physical properties of concrete. Construction and Building Materials, 230. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116992
APPAVURAVTHER, E., VANDOREN, B. y HENRIQUES, J. (2021). Behaviour of screw connections in timber-concrete composites using low strength lightweight concrete. Construction and Building Materials, 286. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122973
ATYIA , M., MAHDY, M. y ELRAHMAN, M. (2021). Production and properties of lightweight concrete incorporating recycled waste crushed clay bricks. Construction and Building Materials, 304. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124655
AWOYERA , P., OLALUSI, O. y BABAGBALE, D. (2021). Production of lightweight mortar using recycled waste papers and pulverized ceramics: Mechanical and microscale properties. Journal of Building Engineering, 31. DOI: https://doi.org/10.1016/j.jobe.2021.102233
BICER, A. (2021). The effect of fly ash and pine tree resin on thermo-mechanical properties of concretes with expanded clay aggregates. Case Studies in Construction Materials, 15. DOI: https://doi.org/10.1016/j.cscm.2021.e00624
BICER, A. y CELIK, N. (2020). Influence of pine resin on thermo-mechanical properties of pumice-cement composites. Cement and Concrete Composites, 112. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103668
CHUNG, S.Y., SIKORA, P., KIM, D., EL MADAWY, M. y ABD ELRAHMAN, M. (2021). Effect of different expanded aggregates on durability-related characteristics of lightweight aggregate concrete. Materials Characterization, 173. DOI: http://doi.org/10.1016/j.matchar.2021.110907
CHUNG, S.Y., SIKORA, P., STEPHAN, D. y ABD ELRAHMAN, M. (2020). The Effect of Lightweight Concrete Cores on the thermal Performance of Vacuum Insulation Panels. Materials, 13(11). DOI:https://doi.org/10.3390/ma13112632
DIELEMANS, G., BRIELS, D., JAUGSTETTER, F., HENKE, K. y DÖRFLER, K. (2021). Additive Manufacturing of Thermally Enhanced Lightweight Concrete Wall Elements with Closed Cellular Structures. Journal of Facade Design and Engineering, 9(1), 59-72. DOI: https://doi.org/10.7480/jfde.2021.1.5418
GRZESZCZYK, S. y JANUS, G. (2020). Reactive powder concrete with lightweight aggregates. Construction and Building Materials, 263. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120164
HAMIDIAN, M. y SHAFGH, P. (2021). Post-peak Behaviour of Composite Column Using a Ductile Lightweight Aggregate Concrete. International Journal of Concrete Structures and Materials, 15(1), 1-16. DOI: https://doi.org/10.1186/s40069-020-00453-6
HASAN, M., SAIDI, T. y AFIFUDDIN, M. (2021). Mechanical properties and absorption of lightweight concrete using lightweight aggregate from diatomaceous earth. Construction and Building Materials, 277. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122324
HÜCKER, A. y SCHLAICH , M. (2017). On Bending of Infra-Lightweight Concrete Elements – Material Behavior, Bond, Bearing and Deformation Behavior. Beton- und Stahlbetonbau, 112, 282–292. DOI: http://doi.org/10.1002/best.201700008
JONES, M., OZLUTAS, K. y ZHENG, L. (2017). High-volume, ultra-low-density fly ash foamed concrete. Magazine of Concrete Research, 69, 1146–1156. DOI: https://doi.org/10.1680/jmacr.17.00063
KAILASH, C. y RASHMI, P. (2018). Investigation into low density fy ash aggregate in micro concrete for lightweight concrete repair. Journal of Building Pathology and Rehabilitation, 3(10), 1-9. DOI: https://doi.org/10.1007/s41024-018-0039-z
KIM, J., LEE, J. y KIM, Y.H. (2021). Equilibrium of capillary and pore water pressure in lightweight aggregates concrete. Mechanics of Advanced Materials and Structures, 1-7. DOI: http://doi.org/10.1080/15376494.2021.1949510
LONG, H. (2020). Influence of coarse aggregates and mortar matrix on properties of lightweight aggregate concretes. International Journal of GEOMATE, 19(75), 1-7. DOI: http://doi.org/10.21660/2020.75.45596
MAGHFOURI, M., ALIMOHAMMADI, V., AZARSA, P., ASADI, I., DOROUDI, Y. y BALAKRISHNAN, B. (2021). Impact of Fly Ash on Time-Dependent Properties of Agro-Waste Lightweight Aggregate Concrete. Journal of Composites Science, 5(6). DOI: https://doi.org/10.3390/jcs5060156
MOHAMED, A., MOHAMED, E., SANG-YEOP, C., PAWEL, S. y DIETMAR, S. (2019). Preparation and characterization of ultra-lightweight foamed concrete incorporating lightweight aggregates. Applied Sciences (Switzerland), 9(7). DOI: http://doi.org/10.3390/app9071447
MORENO-MAROTO, J., BEAUCOUR, A., GONZÁLEZ-CORROCHANO, B. y ALONSO-AZCÁRATE, J. (2019). Study of the suitability of a new structural concrete manufactured with carbon fiber reinforced lightweight aggregates sintered from wastes. Materiales de Construccion, 69(336), e204. DOI: https://doi.org/10.3989/mc.2019.05719
MOUTASSEM, F. (2020). Ultra-Lightweight EPS Concrete: Mixing Procedure and Predictive Models for Compressive Strength. Civil Engineering and Architecture, 8(5), 963 - 972. DOI: http://doi.org/10.13189/cea.2020.080523
MURALITHARAN, R. y RAMASAMY , V. (2017). Development of Lightweight concrete for structural applications. Journal of Structural Engineering, 44(4), 336-344. DOI: http://doi.org/10.1144/136943jm1a691773
OGUNDIPE, K., OGUNBAYO, B., OLOFINNADE, O., AMUSAN, L. y AIGBAVBOA, C. (2021). Affordable housing issue: Experimental investigation on properties ofeco-friendly lightweight concrete produced from incorporating periwinkle and palm kernel shells. Results in Engineering, 9. DOI: http://doi.org/10.1016/j.rineng.2020.100193
OJHA, P., SINGH , B. y BEHERA , A. (2021). Sintered fly ash lightweight aggregate-its properties and performance in structural concrete. Indian Concrete Journal, 95(6), 20-30. DOI: https://doi.org/10.1258.ojh/211957
PALANISAMY, M., KOLANDASAMY, P., AWOYERA, P., GOBINATHA, R., MUTHUSAMY, S., KRISHNASAMY, T. y VILORIA, A. (2020). Permeability properties of lightweight self-consolidating concrete made with coconut shell aggregate. Jounal of Materials Research and Technology, 9(3), 3547-3557. DOI: https://doi.org/10.1016/j.jmrt.2020.01.092
PATERIYA, A., DHARAVATH, K. y ROBERT, D. (2021). Enhancing the strength characteristics of No-fine concrete using wastes and nano materials. Construction and Building Materials, 276. DOI: https://doi.org/10.1016/j.conbuildmat.2020.122222
POKORNY, J., ŠEVCÍK, R., ŠÁL, J. y ZÁRYBNICKÁ, L. (2021). Lightweight blended building waste in the production of innovative cement-based composites for sustainable construction. Construction and Building Materials, 299. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123933
PONGSOPHA, P., SUKONTASUKKUL, P., MAHO, B., INTARABUT, D., PHOO-NGERNKHAM, T., HANJITSUWAN, S., . . . y LIMKATANYU, S. (2021). Sustainable rubberized concrete mixed with surface treated PCM lightweight aggregates subjected to high temperature cycle. Construction and Building Materials, 303. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124535
PONTES, J., BOGAS, J., REAL, S. y SILVA, A. (2021). The Rapid Chloride Migration Test in Assessing the Chloride Penetration Resistance of Normal and Lightweight Concrete. The Rapid Chloride Migration Test in Assessing the Chloride Penetration Resistance of Normal and Lightweight Concrete, 11. DOI: https://doi.org/10.3390/app11167251
RAHUL, A. y SANTHANAM, M. (2020). Evaluating the printability of concretes containing lightweight coarse aggregates. Cement and Concrete Composites, 109. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103570
RAMANJANEYULU, N., SESHAGIRI RAO, M. y DESAI, V. (2019). Behavior of self compacting concrete partial replacement of coarse aggregate with pumice lightweight aggregate. International Journal of Recent Technology and Engineering, 7(6), 434-440. Recuperado de https://www.ijrte.org/wp-content/uploads/papers/v7i6c2/F10790476C219.pdf
ROSCA, B. (2021). Comparative aspects regarding a novel lightweight concrete of structural grade containing brick aggregate as coarse particles and expanded polystyrene beads. Materials Today: Proceedings, 45, 4979-4986. DOI: https://doi.org/10.1016/j.matpr.2021.01.415
SARAYREH, A., OTHMAN, M. L., ABDULLAH, R. y SULAIMAN, A. (2020). Experimental investigation on structural lightweight aggregate concrete using palm-oil clinker and expanded perlite aggregates. Journal of Engineering Science and Technology, 6, 3741-3756. Recuperado de https://jestec.taylors.edu.my/Vol%2015%20issue%206%20December%202020/15_6_17.pdf
SINDHUJA, S. y BHUVANESHWARI, P. (2021). Push-Out Test on Low-Density Concrete Filled Stiffened Steel Tubular Columns. International Journal of Civil Engineering, 19, 1399–1413. DOI: https://doi.org/10.1007/s40999-021-00638-4
STRZAŁKOWSKI, J., SIKORA, P., CHUNG, S.Y. y ELRAHMAN, M. (2021). Thermal performance of building envelopes with structural layers of the same density: Lightweight aggregate concrete versus foamed concrete. Building and Environment, 196. DOI: https://doi.org/10.1016/j.buildenv.2021.107799
SUN, X., LIAO, W., KUMAR, A., KHAYAT , K., TIAN, Z. y MA, H. (2021). Multi-level modeling of thermal behavior of phase change material incorporated lightweight aggregate and concrete. Cement and Concrete Composites, 122. DOI: https://doi.org/10.1016/j.cemconcomp.2021.104131
SUN, Y., LI, J.-S., CHEN, Z., XUE, Q., SUN, Q., ZHOU, Y., … y POON, C. (2021). Production of lightweight aggregate ceramsite from red mud and municipal solid waste incineration bottom ash: Mechanism and optimization. Construction and Building Materials, 287. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122993
TAREQ NOAMAN, A., SUBHI JAMEEL, G. y AHMED, S. (2020). Producing of workable structural lightweight concrete by partial replacement of aggregate with yellow and/or red crushed clay brick (CCB) aggregate. Journal of King Saud University – Engineering Sciences, 34(4), 1-8. DOI: https://doi.org/10.1016/j.jksues.2020.04.013
VINOD, A., SANJAY, M., SIENGCHIN, S. y FISCHER, S. (2021). Fully bio-based agro-waste soy stem fiber reinforced bio-epoxy composites for lightweight structural applications: Influence of surface modification techniques. Construction and Building Materials, 303. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124509
WANG, J., LIU, F. y GUO, J. (2021). Cyclic tensile behavior of ultra-high performance lightweight concrete. Journal of Facade Design and Engineering, 53(4), 170-176. DOI: https://doi.org.10.11918/202009053
WIBOWO, A., LIANASARI, A., WIRANSYA, Z. y KURNIAWAN, T. (2021). The rapid chloride migration test in assessing the chloride penetration resistance of normal and lightweight concrete. International Journal of GEOMATE, 21(83), 150-156. DOI: https://doi.org/10.21660/2021.83.j2146
XIE, J., LIU, J., LIU, F., WANG, J. y HUANG, P. (2019). Investigation of a new lightweight green concrete containing sludge ceramsite and recycled fine aggregates. Journal of Cleaner Production, 235, 1240-1254. DOI: https://doi.org/10.1016/j.jclepro.2019.07.012
YANG, J., SHABAN, W., ELBAZ, K., THOMAS, B., XIE, J. y LI, L. (2020). Properties of concrete containing strengthened crushed brick aggregate by pozzolan slurry. Construction and Building Materials, 246. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118612
YAO, X., LIAO, H., DONG, H., YANG, F., YAO, Y. y WANG, W. (2021). Influence of water repellent on the property of solid waste based sulfoaluminate cement paste and its application in lightweight porous concrete. Construction and Building Materials, 282. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122731
YINH, S., HUSSAIN, Q., JOYKLAD, P., CHAIMAHAWAN, P., RATTANAPITIKON, W., LIMKATANYU, S. y PIMANMAS , A. (2021). Strengthening effect of natural fiber reinforced polymer composites (NFRP) on concrete. Case Studies in Construction Materials, 15 DOI: https://doi.org/10.1016/j.cscm.2021.e00653
ZADE, N., BHOSALE, A., DHIR, P., SARKAR, P. y DAVIS, R. (2021). Variability of mechanical properties of cellular lightweight concrete infill and its effect on seismic safety. Natural Hazards Review, 22(4). DOI: https://doi.org/10.1061/(ASCE)NH.1527-6996.0000501
ZENG, Y., SUN, P., TANG, A. y ZHOU, X. (2020). Shear performance of lightweight aggregate concrete with and without chopped fiber reinforced. Construction and Building Materials, 263. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120187
ZHANG, G., WANG, Y., GE, J., YANG, J. y WEI, Q. (2021). Effect of Lightweight Aggregate on Workability and Mechanical Properties of Ultra-high Performance Concrete. Journal of Building Materials, 24(3), 1-9. DOI: http://doi.org.10.3969 / j.issn.1007-9629.2021.03.008
ZHANG, J., ZHANG, G., SUN, X., PAN, W., HUANG, P., LI, Z., … y ZHOU, X. (2021). Analysis of compressive dynamic behaviors of plain concrete and lightweight aggregate concrete. Case Studies in Construction Materials, 15. DOI: https://doi.org/10.1016/j.cscm.2021.e00557
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2022 Liseth Díaz-Merino, Luis Fernando Altamirano-Tocto, Sócrates Pedro Muñoz-Pérez
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-CompartilhaIgual 4.0.
O conteúdo dos artigos publicados em cada número do Habitat Sustentável é da exclusiva responsabilidade dos autores e não representa necessariamente o pensamento ou compromete a opinião da Universidad del Bío-Bío.
Os autores mantêm os seus direitos de autor e concedem à revista o direito de primeira publicação da sua obra, que está simultaneamente sujeita à Licença de Atribuição Creative Commons CC BY-SA que permite a outros partilhar, transformar ou criar novo material a partir desta obra para fins não comerciais, desde que a autoria e a primeira publicação nesta revista sejam reconhecidas, e as suas novas criações sejam licenciadas sob os mesmos termos.