Uso de materiais leves para a produção de concreto de baixa densidade: uma revisão da literatura

Autores

DOI:

https://doi.org/10.22320/07190700.2022.12.01.06

Palavras-chave:

agregados leves, isolamento térmico, concreto de baixa densidade, resíduos

Resumo

Ao longo do século XX, a indústria da construção civil vem utilizando grandes quantidades de concreto, consequentemente, a demanda por agregados naturais tem aumentado, de modo que se tornou necessário neutralizar o uso destes. Neste contexto, o presente trabalho visa apresentar uma revisão da literatura sobre o uso de materiais leves para a produção de concreto de baixa densidade com isolamento térmico produzido principalmente com agregados leves. Nesta estrutura, foram analisados 52 artigos indexados entre 2017 e 2021 no banco de dados Scopus. Os resultados revelaram que, usando ceramsite de lodo como agregado, pode-se obter uma densidade de 1251 kg/m3 e, com agregados de argila expandida, é possível obter resistências à compressão de 17,7 a 66,1 MPa. Em conclusão, determinou-se que o uso de materiais leves na produção de concreto pode reduzir sua densidade, além de contribuir para a redução dos danos ao meio ambiente.

Downloads

Não há dados estatísticos.

Biografias Autor

Liseth Díaz-Merino, Universidad Señor de Sipán, Chiclayo, Perú

Bacharel em Engenharia Civil, Estudante de Engenharia Civil.

Luis Fernando Altamirano-Tocto, Universidad Señor de Sipán, Chiclayo, Perú

Bacharel em Engenharia Civil, Estudante de Engenharia Civil.

Sócrates Pedro Muñoz-Pérez, Universidad Señor de Sipán, Chiclayo, Perú

PhD em Gestão Pública e Governança, Diretor da Escola de Engenharia Civil, Professor de Pesquisa.

Referências

AJEY KUMAR , V., KARTHIK , M. y MANGALA KESHAVA. (2020). Production of Recycled Plastic Coarse Aggregates and its Utilization in Concrete. International Journal of Emerging Trends in Engineering Research, 8(8), 4118 - 4122. DOI: https://doi.org/10.30534/ijeter/2020/14882020

AL-LAMI, M. y AL-SAADI, E. (2021). Las relaciones entre la resistencia a la compresión y la densidad del hormigón ligero de poliestireno y sus proporciones de componentes. Journal of Applied Engineering Science, 19(1), 175 - 185. DOI: https://doi.org/10.5937/jaes0-27471

ALQAHTANI, F., ABOTALEB, I. y ELMENSHAWY, M. (2021). Life cycle cost analysis of lightweight green concrete utilizing recycled plastic aggregates. Journal of Building Engineering, 40. DOI: https://doi.org/10.1016/j.jobe.2021.102670

ALQAHTANI, F. y ZAFAR, I. (2020). Characterization of processed lightweight aggregate and its effect on physical properties of concrete. Construction and Building Materials, 230. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116992

APPAVURAVTHER, E., VANDOREN, B. y HENRIQUES, J. (2021). Behaviour of screw connections in timber-concrete composites using low strength lightweight concrete. Construction and Building Materials, 286. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122973

ATYIA , M., MAHDY, M. y ELRAHMAN, M. (2021). Production and properties of lightweight concrete incorporating recycled waste crushed clay bricks. Construction and Building Materials, 304. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124655

AWOYERA , P., OLALUSI, O. y BABAGBALE, D. (2021). Production of lightweight mortar using recycled waste papers and pulverized ceramics: Mechanical and microscale properties. Journal of Building Engineering, 31. DOI: https://doi.org/10.1016/j.jobe.2021.102233

BICER, A. (2021). The effect of fly ash and pine tree resin on thermo-mechanical properties of concretes with expanded clay aggregates. Case Studies in Construction Materials, 15. DOI: https://doi.org/10.1016/j.cscm.2021.e00624

BICER, A. y CELIK, N. (2020). Influence of pine resin on thermo-mechanical properties of pumice-cement composites. Cement and Concrete Composites, 112. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103668

CHUNG, S.Y., SIKORA, P., KIM, D., EL MADAWY, M. y ABD ELRAHMAN, M. (2021). Effect of different expanded aggregates on durability-related characteristics of lightweight aggregate concrete. Materials Characterization, 173. DOI: http://doi.org/10.1016/j.matchar.2021.110907

CHUNG, S.Y., SIKORA, P., STEPHAN, D. y ABD ELRAHMAN, M. (2020). The Effect of Lightweight Concrete Cores on the thermal Performance of Vacuum Insulation Panels. Materials, 13(11). DOI:https://doi.org/10.3390/ma13112632

DIELEMANS, G., BRIELS, D., JAUGSTETTER, F., HENKE, K. y DÖRFLER, K. (2021). Additive Manufacturing of Thermally Enhanced Lightweight Concrete Wall Elements with Closed Cellular Structures. Journal of Facade Design and Engineering, 9(1), 59-72. DOI: https://doi.org/10.7480/jfde.2021.1.5418

GRZESZCZYK, S. y JANUS, G. (2020). Reactive powder concrete with lightweight aggregates. Construction and Building Materials, 263. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120164

HAMIDIAN, M. y SHAFGH, P. (2021). Post-peak Behaviour of Composite Column Using a Ductile Lightweight Aggregate Concrete. International Journal of Concrete Structures and Materials, 15(1), 1-16. DOI: https://doi.org/10.1186/s40069-020-00453-6

HASAN, M., SAIDI, T. y AFIFUDDIN, M. (2021). Mechanical properties and absorption of lightweight concrete using lightweight aggregate from diatomaceous earth. Construction and Building Materials, 277. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122324

HÜCKER, A. y SCHLAICH , M. (2017). On Bending of Infra-Lightweight Concrete Elements – Material Behavior, Bond, Bearing and Deformation Behavior. Beton- und Stahlbetonbau, 112, 282–292. DOI: http://doi.org/10.1002/best.201700008

JONES, M., OZLUTAS, K. y ZHENG, L. (2017). High-volume, ultra-low-density fly ash foamed concrete. Magazine of Concrete Research, 69, 1146–1156. DOI: https://doi.org/10.1680/jmacr.17.00063

KAILASH, C. y RASHMI, P. (2018). Investigation into low density fy ash aggregate in micro concrete for lightweight concrete repair. Journal of Building Pathology and Rehabilitation, 3(10), 1-9. DOI: https://doi.org/10.1007/s41024-018-0039-z

KIM, J., LEE, J. y KIM, Y.H. (2021). Equilibrium of capillary and pore water pressure in lightweight aggregates concrete. Mechanics of Advanced Materials and Structures, 1-7. DOI: http://doi.org/10.1080/15376494.2021.1949510

LONG, H. (2020). Influence of coarse aggregates and mortar matrix on properties of lightweight aggregate concretes. International Journal of GEOMATE, 19(75), 1-7. DOI: http://doi.org/10.21660/2020.75.45596

MAGHFOURI, M., ALIMOHAMMADI, V., AZARSA, P., ASADI, I., DOROUDI, Y. y BALAKRISHNAN, B. (2021). Impact of Fly Ash on Time-Dependent Properties of Agro-Waste Lightweight Aggregate Concrete. Journal of Composites Science, 5(6). DOI: https://doi.org/10.3390/jcs5060156

MOHAMED, A., MOHAMED, E., SANG-YEOP, C., PAWEL, S. y DIETMAR, S. (2019). Preparation and characterization of ultra-lightweight foamed concrete incorporating lightweight aggregates. Applied Sciences (Switzerland), 9(7). DOI: http://doi.org/10.3390/app9071447

MORENO-MAROTO, J., BEAUCOUR, A., GONZÁLEZ-CORROCHANO, B. y ALONSO-AZCÁRATE, J. (2019). Study of the suitability of a new structural concrete manufactured with carbon fiber reinforced lightweight aggregates sintered from wastes. Materiales de Construccion, 69(336), e204. DOI: https://doi.org/10.3989/mc.2019.05719

MOUTASSEM, F. (2020). Ultra-Lightweight EPS Concrete: Mixing Procedure and Predictive Models for Compressive Strength. Civil Engineering and Architecture, 8(5), 963 - 972. DOI: http://doi.org/10.13189/cea.2020.080523

MURALITHARAN, R. y RAMASAMY , V. (2017). Development of Lightweight concrete for structural applications. Journal of Structural Engineering, 44(4), 336-344. DOI: http://doi.org/10.1144/136943jm1a691773

OGUNDIPE, K., OGUNBAYO, B., OLOFINNADE, O., AMUSAN, L. y AIGBAVBOA, C. (2021). Affordable housing issue: Experimental investigation on properties ofeco-friendly lightweight concrete produced from incorporating periwinkle and palm kernel shells. Results in Engineering, 9. DOI: http://doi.org/10.1016/j.rineng.2020.100193

OJHA, P., SINGH , B. y BEHERA , A. (2021). Sintered fly ash lightweight aggregate-its properties and performance in structural concrete. Indian Concrete Journal, 95(6), 20-30. DOI: https://doi.org/10.1258.ojh/211957

PALANISAMY, M., KOLANDASAMY, P., AWOYERA, P., GOBINATHA, R., MUTHUSAMY, S., KRISHNASAMY, T. y VILORIA, A. (2020). Permeability properties of lightweight self-consolidating concrete made with coconut shell aggregate. Jounal of Materials Research and Technology, 9(3), 3547-3557. DOI: https://doi.org/10.1016/j.jmrt.2020.01.092

PATERIYA, A., DHARAVATH, K. y ROBERT, D. (2021). Enhancing the strength characteristics of No-fine concrete using wastes and nano materials. Construction and Building Materials, 276. DOI: https://doi.org/10.1016/j.conbuildmat.2020.122222

POKORNY, J., ŠEVCÍK, R., ŠÁL, J. y ZÁRYBNICKÁ, L. (2021). Lightweight blended building waste in the production of innovative cement-based composites for sustainable construction. Construction and Building Materials, 299. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123933

PONGSOPHA, P., SUKONTASUKKUL, P., MAHO, B., INTARABUT, D., PHOO-NGERNKHAM, T., HANJITSUWAN, S., . . . y LIMKATANYU, S. (2021). Sustainable rubberized concrete mixed with surface treated PCM lightweight aggregates subjected to high temperature cycle. Construction and Building Materials, 303. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124535

PONTES, J., BOGAS, J., REAL, S. y SILVA, A. (2021). The Rapid Chloride Migration Test in Assessing the Chloride Penetration Resistance of Normal and Lightweight Concrete. The Rapid Chloride Migration Test in Assessing the Chloride Penetration Resistance of Normal and Lightweight Concrete, 11. DOI: https://doi.org/10.3390/app11167251

RAHUL, A. y SANTHANAM, M. (2020). Evaluating the printability of concretes containing lightweight coarse aggregates. Cement and Concrete Composites, 109. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103570

RAMANJANEYULU, N., SESHAGIRI RAO, M. y DESAI, V. (2019). Behavior of self compacting concrete partial replacement of coarse aggregate with pumice lightweight aggregate. International Journal of Recent Technology and Engineering, 7(6), 434-440. Recuperado de https://www.ijrte.org/wp-content/uploads/papers/v7i6c2/F10790476C219.pdf

ROSCA, B. (2021). Comparative aspects regarding a novel lightweight concrete of structural grade containing brick aggregate as coarse particles and expanded polystyrene beads. Materials Today: Proceedings, 45, 4979-4986. DOI: https://doi.org/10.1016/j.matpr.2021.01.415

SARAYREH, A., OTHMAN, M. L., ABDULLAH, R. y SULAIMAN, A. (2020). Experimental investigation on structural lightweight aggregate concrete using palm-oil clinker and expanded perlite aggregates. Journal of Engineering Science and Technology, 6, 3741-3756. Recuperado de https://jestec.taylors.edu.my/Vol%2015%20issue%206%20December%202020/15_6_17.pdf

SINDHUJA, S. y BHUVANESHWARI, P. (2021). Push-Out Test on Low-Density Concrete Filled Stiffened Steel Tubular Columns. International Journal of Civil Engineering, 19, 1399–1413. DOI: https://doi.org/10.1007/s40999-021-00638-4

STRZAŁKOWSKI, J., SIKORA, P., CHUNG, S.Y. y ELRAHMAN, M. (2021). Thermal performance of building envelopes with structural layers of the same density: Lightweight aggregate concrete versus foamed concrete. Building and Environment, 196. DOI: https://doi.org/10.1016/j.buildenv.2021.107799

SUN, X., LIAO, W., KUMAR, A., KHAYAT , K., TIAN, Z. y MA, H. (2021). Multi-level modeling of thermal behavior of phase change material incorporated lightweight aggregate and concrete. Cement and Concrete Composites, 122. DOI: https://doi.org/10.1016/j.cemconcomp.2021.104131

SUN, Y., LI, J.-S., CHEN, Z., XUE, Q., SUN, Q., ZHOU, Y., … y POON, C. (2021). Production of lightweight aggregate ceramsite from red mud and municipal solid waste incineration bottom ash: Mechanism and optimization. Construction and Building Materials, 287. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122993

TAREQ NOAMAN, A., SUBHI JAMEEL, G. y AHMED, S. (2020). Producing of workable structural lightweight concrete by partial replacement of aggregate with yellow and/or red crushed clay brick (CCB) aggregate. Journal of King Saud University – Engineering Sciences, 34(4), 1-8. DOI: https://doi.org/10.1016/j.jksues.2020.04.013

VINOD, A., SANJAY, M., SIENGCHIN, S. y FISCHER, S. (2021). Fully bio-based agro-waste soy stem fiber reinforced bio-epoxy composites for lightweight structural applications: Influence of surface modification techniques. Construction and Building Materials, 303. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124509

WANG, J., LIU, F. y GUO, J. (2021). Cyclic tensile behavior of ultra-high performance lightweight concrete. Journal of Facade Design and Engineering, 53(4), 170-176. DOI: https://doi.org.10.11918/202009053

WIBOWO, A., LIANASARI, A., WIRANSYA, Z. y KURNIAWAN, T. (2021). The rapid chloride migration test in assessing the chloride penetration resistance of normal and lightweight concrete. International Journal of GEOMATE, 21(83), 150-156. DOI: https://doi.org/10.21660/2021.83.j2146

XIE, J., LIU, J., LIU, F., WANG, J. y HUANG, P. (2019). Investigation of a new lightweight green concrete containing sludge ceramsite and recycled fine aggregates. Journal of Cleaner Production, 235, 1240-1254. DOI: https://doi.org/10.1016/j.jclepro.2019.07.012

YANG, J., SHABAN, W., ELBAZ, K., THOMAS, B., XIE, J. y LI, L. (2020). Properties of concrete containing strengthened crushed brick aggregate by pozzolan slurry. Construction and Building Materials, 246. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118612

YAO, X., LIAO, H., DONG, H., YANG, F., YAO, Y. y WANG, W. (2021). Influence of water repellent on the property of solid waste based sulfoaluminate cement paste and its application in lightweight porous concrete. Construction and Building Materials, 282. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122731

YINH, S., HUSSAIN, Q., JOYKLAD, P., CHAIMAHAWAN, P., RATTANAPITIKON, W., LIMKATANYU, S. y PIMANMAS , A. (2021). Strengthening effect of natural fiber reinforced polymer composites (NFRP) on concrete. Case Studies in Construction Materials, 15 DOI: https://doi.org/10.1016/j.cscm.2021.e00653

ZADE, N., BHOSALE, A., DHIR, P., SARKAR, P. y DAVIS, R. (2021). Variability of mechanical properties of cellular lightweight concrete infill and its effect on seismic safety. Natural Hazards Review, 22(4). DOI: https://doi.org/10.1061/(ASCE)NH.1527-6996.0000501

ZENG, Y., SUN, P., TANG, A. y ZHOU, X. (2020). Shear performance of lightweight aggregate concrete with and without chopped fiber reinforced. Construction and Building Materials, 263. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120187

ZHANG, G., WANG, Y., GE, J., YANG, J. y WEI, Q. (2021). Effect of Lightweight Aggregate on Workability and Mechanical Properties of Ultra-high Performance Concrete. Journal of Building Materials, 24(3), 1-9. DOI: http://doi.org.10.3969 / j.issn.1007-9629.2021.03.008

ZHANG, J., ZHANG, G., SUN, X., PAN, W., HUANG, P., LI, Z., … y ZHOU, X. (2021). Analysis of compressive dynamic behaviors of plain concrete and lightweight aggregate concrete. Case Studies in Construction Materials, 15. DOI: https://doi.org/10.1016/j.cscm.2021.e00557

Publicado

2022-06-30

Como Citar

Díaz-Merino, L. ., Altamirano-Tocto, L. F. ., & Muñoz-Pérez, S. P. (2022). Uso de materiais leves para a produção de concreto de baixa densidade: uma revisão da literatura. Hábitat Sustentable, 12(1), 90–101. https://doi.org/10.22320/07190700.2022.12.01.06

Edição

Secção

Artículos