Infrared spectroscopy of the surface of thermally-modified teak juvenile wood

  • Juliana de Oliveira Lopes
  • Rosilei Aparecida Garcia
  • Natália Dias de Souza
Keywords: Cellulose crystallinity, chemical modification, heat treatment, quinone derivatives, Tectona grandis


During the thermal modification of the wood there is a decreasing gradient of temperature from the surface to its interior, therefore, the most severe chemical modifications occur on the surface. These chemical modifications directly affect the quality and durability of adhesives and coating. Therefore, this study investigated the chemical modification of the surface of thermally-modified teak juvenile wood. Heartwood and sapwood samples were treated at 180 and 200oC. Chemical analyses were performed by Fourier transform infrared spectroscopy (FTIR) in reflectance mode with a microscope. Spectra showed an increase in cellulose crystallinity and a decrease in relative contents of hydroxyl groups, lignin and extractives – especially quinones, waxes and oils – following thermal modification. Extractive content of the heartwood was relatively higher than that of sapwood. Heartwood was more susceptible to thermal degradation than sapwood.


Download data is not yet available.


ATES, S.; AKYILDIZ, M.H.; OZDEMIR, H. 2009. Effects of heat treatment on calabrian pine (Pinus brutia Ten.) wood. BioResources 4(3): 1032-1043.

AWOYEMI, L.; JONES, I.P. 2011. Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Sci Technol 45:261-267.

BARBOSA, L.C. DE A. 2007. Espectroscopia no infravermelho na caracterização de compostos orgânicos. UFV, Viçosa.

BATISTA, D.C.; DE MUNIZ, G.I.B.; OLIVEIRA, J.T.S.; PAES, J.B.; NISGOSKI, S. 2016. Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood – part 1: cell wall polymers and extractives contents. Maderas-Cienc Tecnol 18(2):273-284.

BHUIYAN, T.R.; HIRAI, N.; SOBUE, N. 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431-436.

BOONSTRA, M.J.; TJEERDSMA, B. 2006. Chemical analysis of heat treated softwoods. Holz als Roh- und Werkstoff 64(3): 204-211.

CHRISTIANSEN, A.W. 1994. Effect of overdrying of yellow-poplar veneer on physical properties and bonding. Holz als Roh- und Werkstoff 52:139-149.

DE MOURA, L.F.; BRITO, J.O.; DA SILVA, F.G. 2012. Effect of thermal treatment on the chemical characteristics of wood from Eucalyptus grandis W. Hill ex Maiden under different atmospheric conditions. Cerne 18(3):449-455.

FABIYI, J.S.; OGUNLEYE, B.M. 2015. Mid-Infrared spectroscopy and dynamic mechanical analysis of heat-treated obeche (Triplochiton scleroxulon) wood. Maderas-Cienc Tecnol 17(1):5-16.

FACKLER, K.; STEVANIC, J.S.; TERS, T.; HINTERSTOISSER, B.; SCHWANNINGER, M.; SALMÉN, L. 2011. FTIR imaging microscopy to localize and characterize simultaneous and selective white-rot decay within spruce wood cells. Holzforschung 65(3):411-420.

FAIX, O. 1991. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45: 21-27.

FAIX, O. 1992. Fourier transform infrared spectroscopy. In: LIN, S.Y.; DENCE, C.W. (ed.) Methods in lignin chemistry. Springer-Verlag, Germany.

FENGEL, D.; LUDWIG, M. 1991. Possibilities and limits of FTIR spectroscopy characterization of the cellulose. Papier 45(2): 45-51.

GONÇALVES, A.; SCHUCHARDT, U. 1999. Oxidation of organosolv lignins in acetic acid: Influence of oxygen pressure. Applied Biochemistry and Biotechnology 77:127-132.

GONZÁLEZ-PENA, M.M.; HALE, M.D.C. 2011. Rapid assessment of physical properties and chemical composition of thermally modified wood by mid-infrared spectroscopy. Wood Sci Technol 45: 83-102.

HAUPT, M.; LEITHOFF, D.; MEIER, D.; PULS, J.; RICHTER, H.G.; FAIX, O. 2003. Heartwood extractives and natural durability of plantation grown teakwood (Tectona grandis L.): a case study. Holz als Roh- und Werkstoff 61(6):473-474.

HILL, C.A.S. 2006. Wood modification: Chemical, thermal and other processes. John Wiley & Sons, Ltd., England.

HUSSAIN, H.; KROHN, K.; AHMAD, V.U.; MIANA, G.A.; GREEN, I.R. 2007. Lapachol: an overview. Arkivoc 145-171.

JÄMSÄ, S.; VIITANIEMI, P. 2001. Heat treatment of wood: better durability without chemicals. In: RAPP, A.O. Review on heat treatments of wood. In: Special Seminar: Environmental Optimisation of Wood Protection, 2001. Antibes, France. Proceedings… Antibes, France: COST ACTION E 22.

LI, M.Y.; CHENG, S.C.; LI, D.; WANG, S.N.; HUANG, A.M.; SUN, S.Q. 2015. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chinese Chemical Letters 26:221-225.

LIONETTO, F.; SOLE, R.D.; CANNOLETTA, D.; VASAPOLLO, G.; MAFFEZZOLI, A. 2012. Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5(10):1910-1922.

LOPES, J.O. 2018. Physical-chemical characterization and surface wettability of the thermally-modified teak juvenile wood. Doctor Thesis, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.

LOPES, J.O.; GARCIA, R.A.; NASCIMENTO, A.M.; LATORRACA, J.V.F. 2014. Color uniformization of the young teak wood by heat treatment. Revista Árvore 38(3):561-568.

MOHANTY, A.K.; MISRA, M.; HINRICHSEN, G. 2000. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276/277(1):1-24.

MOREIRA, R.Y.O.; ARRUDA, M.S.P.; ARRUDA, A.C.; SANTOS, L.S.; MÜLLER, A.H.; GUILHON, G.M.S.P.; SANTOS, A.S.; TEREZO, E. 2006. Antraquinonas e naftoquinonas do caule de um espécime de reflorestamento de Tectona grandis (Vernenaceae). Revista Brasileira de Farmacognosia 16(3):392-396.

NIAMKÉ, F.B.; AMUSANT, N.; CHARPENTIER, J.-P.; CHAIX, G.; BAISSAC, Y.; BOUTAHAR, N.; ADIMA, A.A.; KATI-COULIBALY, S.; JAY-ALLEMAND, C. 2011. Relationships between biochemical attributes (non-structural carbohydrates and phenolics) and natural durability against fungi in dry teak wood (Tectona grandis L. f.). Annals of Forest Science 68:201-211.

NIDAVANI, R.B.; MHALAKSMI, A.M. 2014. Teak (Tectona grandis Linn.): renowned timber plant with potential medicinal values. International Journal of Pharmacy and Pharmaceutical Sciences 6(1):48-54.

NUNES, C.S.; DO NASCIMENTO, A.M.; GARCIA, R.A.; LELIS, R.C.C. 2016. Adhesion quality of the heat-treated Corymbia citriodora and Eucallyptus pellita woods. Scientia Forestalis 44(109):41-56.

PANDEY, K.K. 1999. A study of chemical structure of soft and hardwood polymers by FTIR spectroscopy. Journal of Applied Polymer Science 71: 1969-1975.

POPESCU, C.M.; POPESCU, M.C. 2013. A near infrared spectroscopic study of the structural modifications of lime (Tilia cordata Mill.) wood during hydro-thermal treatment. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 115:227- 233.

POUBEL, D.S.; GARCIA, R.A.; SANTOS, W.A.; OLIVEIRA, G.L.; ABREU, H.S. 2013. Effect of the heat treatment on physical and chemical properties of Pinus caribaea wood. Cerne 19(3):391-398.

ROUSSET, P.; PERRÉ, P.; GIRARD, P. 2004. Modification of mass transfer properties in poplar wood (P. robusta) by thermal treatment at high temperature. Holz als Roh- und Werkstoff 62(2):113-119.

SARKANEN, K.V.; CHANG, H.M.; ERICSSON, B. 1967a. Species variation in lignins. I. Infrared spectra of guaiacyl and syringyl models. Tappi Journal 50:572-575.

SARKANEN, K.V.; CHANG, H.M.; ALLAN, G.G. 1967b. Species variation in lignins. II. Conifer lignins. Tappi Journal 50: 583-587.

SHIMIZU, J.Y.; KLEIN, H.; OLIVEIRA, J.R.V. DE. 2007. Diagnóstico das plantações florestais em Mato Grosso. Central de Texto, Cuiabá, MT.

SUN, S.Q.; ZHOU, Q.; CHEN, J.B. 2011. Infrared Spectroscopy for Complex Mixtures –Applications in Food and Traditional Chinese Medicine. Chemical Industry Press, Beijing.

SYRJÄNEN, T. 2001. Production and classification of heat treated wood in Finland. In: RAPP, A. O. Review on heat treatments of wood. In: Special Seminar: Environmental Optimisation of Wood Protection, 2001. Antibes, France. Proceedings… COST ACTION E 22, Antibes, France.

TEMIZ, A.; TERZIEV, N.; JACOBSEN, B.; EIKENES, M. 2006. Weathering, water absorption and durability of silicon, acetylated and heat-treated wood. Journal of Applied Polymer Science 102:4506-4513.

TJEERDSMA, B.F.; BOONSTRA, M.; PIZZI, A.; TEKELY, P.; MILITIZ, H. 1998. Characterization of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff 56(3):149-153.

TJEERDSMA, B.F.; MILITZ, H. 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff 63(2):102-111.

TSUCHIKAWA, S.; SIESLER, H.W. 2003. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: Hardwood. Applied Spectroscopy 57(6):675-681.

TUONG, V.M.; LI, J. 2010. Effect of heat treatment on the change in color and dimensional stability of Acacia hybrid wood. BioResources 5(2):1257-1267.

WEILAND, J.J.; GUYONNET, R. 2003. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh-Werkstoff 61(2):216-220.

WIKBERG, H.; MAUNU, S.L. 2004. Characterization of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydrate Polymers 58:461-466.

YALCIN, M.; SAHIN, H.I. 2015. Changes in the chemical structure and decay resistance of heat-treated narrow-leaved ash wood. Maderas-Cienc Tecnol 17(2):435-446.

YAMAMOTO, K.; SIMATUPANG, M.H.; HASHIM, R. 1998. Caoutchouc in teak wood (Tectona grandis): Formation, location, influence on sunlight irradiation, hydrophobicity and decay resistance. Holz als Roh- und Werkstoff 56(3):201-209.
How to Cite
de Oliveira Lopes, J., Aparecida Garcia, R., & Dias de Souza, N. (2018). Infrared spectroscopy of the surface of thermally-modified teak juvenile wood. Maderas. Ciencia Y Tecnología, 20(4), 737-746. Retrieved from

Most read articles by the same author(s)