Effects of saturated vapor pre-steaming on drying strain in asian white birch: Experimentation and modelling
Keywords:
Artificial neural network, Betula platyphylla, mechano-sorptive creep, restrained shrinkage strain, white birch discsAbstract
The effect of low pressure saturated vapor pre-steaming on restrained shrinkage strain, mechano-sorptive creep and the distribution of moisture content was investigated during conventional drying of wood discs. Mechano-sorptive creep was furthermore modelled by artificial neural network theory with five inputs, i.e., pre-steaming and drying temperatures, wood moisture content, relative humidity and distance from the pith. Results revealed that, pre-steaming partly reduced the variation of moisture content distribution along radial direction, increased restrained shrinkage strain in heartwood and decreased in sapwood and slightly decreased the mechano-sorptive creep. The neural network model provided reasonable prediction results, namely, the coefficient of determination for training, validation and test sets greater than 0.95.
Downloads
References
Alexiou, P.N.; Marchant, J.F.; Groves, K.W. 1990b. Effect of pre-steaming on moisture gradients, drying stresses and sets, and face checking in regrowth Eucalyptus pilularis Sm. Wood Science and Technology 24(2): 201-209.
Allegretti, O.; Ferrari, S. 2008. A Sensor for direct measurement of internal stress in wood during drying: Experimental tests toward industrial application. Drying Technology 26(9): 1150-1154.
Avramidis, S.; Iliadis, L. 2005a. Predicting wood thermal conductivity using artificial neural networks. Wood and Fiber Science 37(4): 682-690.
Avramidis, S.; Iliadis, L. 2005b. Wood-water sorption isotherm prediction with artificial neural networks: a preliminary study. Holzforschung 59(3): 336-341.
Avramidis, S.; Iliadis, L.; Mansfield, S.D. 2006. Wood dielectric loss factor prediction with artificial neural networks. Wood Science and Technology 40(7): 563-574.
Avramidis, S.; Oliveira, L. 1993. Influence of pre-steaming on kiln-drying of thick hem-fir lumber. Forest Product Journal 43(11): 7-12.
Campbell, G.S. 1961. The value of presteaming for drying some collapse susceptible eucalypts. Forest Product Journal 9: 343-347.
Chafe, S.C. 1990. Effect of brief presteaming on shrinkage, collapse and other wood-water relationships in Eucalyptus regnans F. Muell. Wood Science and Technology 24(4): 311-326.
Chafe, S.C. 1993. The effect of boiling on shrinkage, collapse and other wood-water properties in core segments of Eucalyptus regnans E. Muell. Wood Science and Technology 27(3): 205-217.
Chafe, S.C. 1995. Preheating and continuous and intermittent drying in boards of Eucalyptus regnans F. Muell. I. Effect on internal checking, shrinkage and collapse. Holzforschung49(3): 227-233.
Chafe, S.C.; Ananias, R.A. 1996. Effect of pre-steaming on moisture loss and internal checking in high-temperature-dried boards of Eucalyptus globulus and Eucalyptus regnans. Journal of the Institute of Wood Science 14(2): 72-77.
Chafe, S.C.; Carr, J.M. 1998. Effect of preheating on internal checking in boards of different dimension and grain orientation in Eucalyptus regnans. Holz als Roh- und Werkstoff 56(1): 15-23.
Dashti, H.; Tarmian, A.; Faezipour, M.; Hedjazi, S.; Shahverdi, M. 2012. Effect of pre-steaming on mass transfer properties of fir wood (Abies albal.); a gymnosperm species with torus margo pit membrane. BioResource 7(2): 1907-1018.
Esteban, L.G.; Fernandez, F.G.; Palacios, P.D. 2009. MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing. Computers & Structures 87(21-22): 1360-1365.
Ferrari, S.; Pearson, H.; Allegretti, O.; Gabbitas, B. 2010. Measurement of internal stress in Radiata pine sapwood during drying using an improved online sensor. Holzforschung 64(6): 781-789.
Fu, Z.Y.; Zhao, J.Y.; Sun, X.M.; Cai, Y.C. 2015. The variation of tangential rheological properties caused by shrinkage anisotropy and moisture content gradient in white birch disks. Holzforschung 69(5): 573-579.
Fu, Z.Y.; Zhao, J.Y.; Lv, Y.Y.; Huan, S.Q.; Cai, Y.C. 2016a. Stress characteristics and stress reversal mechanism of white birch (Betula platyphylla) disks under different drying conditions. Maderas-Ciencia y tecnología 18(2): 361-372.
Fu, Z.Y.; Zhao, J.Y.; Yang, Y.L.; Cai, Y.C. 2016b. Variation of drying strains between tangential and radial directions in Asian White Birch. Forests 7 (3): 59-59.
Fruhwald, E. 2006. Improvement of shape stability by high-temperature treatment of Norway spruce Effects of drying at 120 °C with and without restraint on twist. Holz als Roh- und Werkstoff 64(1): 24-29.
Harris, R.A.; Schroeder, J.G.; Addis, S.C. 1989. Steaming of red oak prior to kiln-drying: effects on moisture movement. Forest Products Journal 39(11/12): 70-72.
Larsen, F.; Ormarsson, S. 2013. Numerical and experimental study of moisture-induced stress and strain field developments in timber logs. Wood Science and Technology 47(4): 837-852.
Larsen, F.; Ormarsson, S. 2014. Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs. Holzforschung 68(1): 133-140.
Märtensson, A.; Svensson, S. 1997. Stress-strain relationship of drying wood Part 1: Development of a constitutive mode l. Holzforschung 51(5): 472-478.
Moutee, M.; Fortin, Y.; Fafard, M. 2007. A global rheological model of wood cantilever as applied to wood drying. Wood Science and Technology 41(3): 209-234.
Oliveira, L.C.; Avramidis, S. 1993. Effect of presteaming on shrinkage and moisture content distribution of 4" by 4" Hemfir lumber. Western Dry Kiln Association Meeting 44th: 60-66.
Ratnasingam, J.; Grohmann, R.; Scholz, F. 2014. Effect of pre-steaming on the drying quality of Rubberwood. European Journal of Wood and Wood Products 72(1): 135-137.
Rice, R.W.; Youngs, R.L. 1990. The mechanism and development of creep during drying of red oak. Holz als Roh- und Werkstoff 48(2): 73-79.
Salin, J.G. 1992. Numerical predictions of checking during timber drying and a new mechano-sorptive model. Holz als Roh- und Werkstoff 50(5): 195-200.
Salinas, C.; Chavez, C.; Ananias, R.A.; Elustondo, D. 2015. Unidimensional simulation of drying stress in radiata pine wood. Drying Technology 33(8): 8996-1005.
Simpson, W.T. 1975. Effect of steaming on the drying rate of several species of wood. Wood Science 7: 247-255.
Simpson, W.T. 1976. Effect of pre-steaming on moisture gradient of northern red oak during drying. Wood Science 8: 272-276.
Tiryaki, S.; Aydin, A. 2014. An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials 62: 102-108.
Tiryaki, S.; Hamzacebi, C. 2014. Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks. Measurement 49: 266-274.
Watanabe, K.; Kobayashi, I.; Matsushita, Y.; Saito, S.; Kuroda, N.; Noshiro, S. 2014. Application of near-infrared spectroscopy for evaluation of drying stress on lumber surface: A comparison of artificial neural networks and partial least squares regression. Drying Technology 32(5): 590-596.
Wu, Q.; Milota, M.R. 1995. Rheological behavior of Douglas-fir perpendicular to the grain at elevated temperatures. Wood and Fiber Science 27(3): 285-295.
Zhan, J.F.; Avramidis, S. 2017. Impact of conventional drying and thermal post-treatment on the residual stresses and shape deformations of larch lumber. Drying Technology 35(1):15-24.