Effects of saturated vapor pre-steaming on drying strain in asian white birch: Experimentation and modelling

Authors

  • Zongying Fu
  • Stavros Avramidis
  • Jingyao Zhao
  • Yingchun Cai
  • Yongdong Zhou

Keywords:

Artificial neural network, Betula platyphylla, mechano-sorptive creep, restrained shrinkage strain, white birch discs

Abstract

The effect of low pressure saturated vapor pre-steaming on restrained shrinkage strain, mechano-sorptive creep and the distribution of moisture content was investigated during conventional drying of wood discs. Mechano-sorptive creep was furthermore modelled by artificial neural network theory with five inputs, i.e., pre-steaming and drying temperatures, wood moisture content, relative humidity and distance from the pith. Results revealed that, pre-steaming partly reduced the variation of moisture content distribution along radial direction, increased restrained shrinkage strain in heartwood and decreased in sapwood and slightly decreased the mechano-sorptive creep. The neural network model provided reasonable prediction results, namely, the coefficient of determination for training, validation and test sets greater than 0.95.

Downloads

Download data is not yet available.

References

Alexiou, P.N.; Wilkins, A.P.; Hartley, J. 1990a. Effect of pre-steaming on drying rate, wood anatomy and shrinkage of regrowth Eucalyptus pilularis Sm. Wood Science and Technology 24(1): 103-110.

Alexiou, P.N.; Marchant, J.F.; Groves, K.W. 1990b. Effect of pre-steaming on moisture gradients, drying stresses and sets, and face checking in regrowth Eucalyptus pilularis Sm. Wood Science and Technology 24(2): 201-209.

Allegretti, O.; Ferrari, S. 2008. A Sensor for direct measurement of internal stress in wood during drying: Experimental tests toward industrial application. Drying Technology 26(9): 1150-1154.

Avramidis, S.; Iliadis, L. 2005a. Predicting wood thermal conductivity using artificial neural networks. Wood and Fiber Science 37(4): 682-690.

Avramidis, S.; Iliadis, L. 2005b. Wood-water sorption isotherm prediction with artificial neural networks: a preliminary study. Holzforschung 59(3): 336-341.

Avramidis, S.; Iliadis, L.; Mansfield, S.D. 2006. Wood dielectric loss factor prediction with artificial neural networks. Wood Science and Technology 40(7): 563-574.

Avramidis, S.; Oliveira, L. 1993. Influence of pre-steaming on kiln-drying of thick hem-fir lumber. Forest Product Journal 43(11): 7-12.

Campbell, G.S. 1961. The value of presteaming for drying some collapse susceptible eucalypts. Forest Product Journal 9: 343-347.

Chafe, S.C. 1990. Effect of brief presteaming on shrinkage, collapse and other wood-water relationships in Eucalyptus regnans F. Muell. Wood Science and Technology 24(4): 311-326.

Chafe, S.C. 1993. The effect of boiling on shrinkage, collapse and other wood-water properties in core segments of Eucalyptus regnans E. Muell. Wood Science and Technology 27(3): 205-217.

Chafe, S.C. 1995. Preheating and continuous and intermittent drying in boards of Eucalyptus regnans F. Muell. I. Effect on internal checking, shrinkage and collapse. Holzforschung49(3): 227-233.

Chafe, S.C.; Ananias, R.A. 1996. Effect of pre-steaming on moisture loss and internal checking in high-temperature-dried boards of Eucalyptus globulus and Eucalyptus regnans. Journal of the Institute of Wood Science 14(2): 72-77.

Chafe, S.C.; Carr, J.M. 1998. Effect of preheating on internal checking in boards of different dimension and grain orientation in Eucalyptus regnans. Holz als Roh- und Werkstoff 56(1): 15-23.

Dashti, H.; Tarmian, A.; Faezipour, M.; Hedjazi, S.; Shahverdi, M. 2012. Effect of pre-steaming on mass transfer properties of fir wood (Abies albal.); a gymnosperm species with torus margo pit membrane. BioResource 7(2): 1907-1018.

Esteban, L.G.; Fernandez, F.G.; Palacios, P.D. 2009. MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing. Computers & Structures 87(21-22): 1360-1365.

Ferrari, S.; Pearson, H.; Allegretti, O.; Gabbitas, B. 2010. Measurement of internal stress in Radiata pine sapwood during drying using an improved online sensor. Holzforschung 64(6): 781-789.

Fu, Z.Y.; Zhao, J.Y.; Sun, X.M.; Cai, Y.C. 2015. The variation of tangential rheological properties caused by shrinkage anisotropy and moisture content gradient in white birch disks. Holzforschung 69(5): 573-579.

Fu, Z.Y.; Zhao, J.Y.; Lv, Y.Y.; Huan, S.Q.; Cai, Y.C. 2016a. Stress characteristics and stress reversal mechanism of white birch (Betula platyphylla) disks under different drying conditions. Maderas-Ciencia y tecnología 18(2): 361-372.

Fu, Z.Y.; Zhao, J.Y.; Yang, Y.L.; Cai, Y.C. 2016b. Variation of drying strains between tangential and radial directions in Asian White Birch. Forests 7 (3): 59-59.

Fruhwald, E. 2006. Improvement of shape stability by high-temperature treatment of Norway spruce Effects of drying at 120 °C with and without restraint on twist. Holz als Roh- und Werkstoff 64(1): 24-29.

Harris, R.A.; Schroeder, J.G.; Addis, S.C. 1989. Steaming of red oak prior to kiln-drying: effects on moisture movement. Forest Products Journal 39(11/12): 70-72.

Larsen, F.; Ormarsson, S. 2013. Numerical and experimental study of moisture-induced stress and strain field developments in timber logs. Wood Science and Technology 47(4): 837-852.

Larsen, F.; Ormarsson, S. 2014. Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs. Holzforschung 68(1): 133-140.

Märtensson, A.; Svensson, S. 1997. Stress-strain relationship of drying wood Part 1: Development of a constitutive mode l. Holzforschung 51(5): 472-478.

Moutee, M.; Fortin, Y.; Fafard, M. 2007. A global rheological model of wood cantilever as applied to wood drying. Wood Science and Technology 41(3): 209-234.

Oliveira, L.C.; Avramidis, S. 1993. Effect of presteaming on shrinkage and moisture content distribution of 4" by 4" Hemfir lumber. Western Dry Kiln Association Meeting 44th: 60-66.

Ratnasingam, J.; Grohmann, R.; Scholz, F. 2014. Effect of pre-steaming on the drying quality of Rubberwood. European Journal of Wood and Wood Products 72(1): 135-137.

Rice, R.W.; Youngs, R.L. 1990. The mechanism and development of creep during drying of red oak. Holz als Roh- und Werkstoff 48(2): 73-79.

Salin, J.G. 1992. Numerical predictions of checking during timber drying and a new mechano-sorptive model. Holz als Roh- und Werkstoff 50(5): 195-200.

Salinas, C.; Chavez, C.; Ananias, R.A.; Elustondo, D. 2015. Unidimensional simulation of drying stress in radiata pine wood. Drying Technology 33(8): 8996-1005.

Simpson, W.T. 1975. Effect of steaming on the drying rate of several species of wood. Wood Science 7: 247-255.

Simpson, W.T. 1976. Effect of pre-steaming on moisture gradient of northern red oak during drying. Wood Science 8: 272-276.

Tiryaki, S.; Aydin, A. 2014. An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials 62: 102-108.

Tiryaki, S.; Hamzacebi, C. 2014. Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks. Measurement 49: 266-274.

Watanabe, K.; Kobayashi, I.; Matsushita, Y.; Saito, S.; Kuroda, N.; Noshiro, S. 2014. Application of near-infrared spectroscopy for evaluation of drying stress on lumber surface: A comparison of artificial neural networks and partial least squares regression. Drying Technology 32(5): 590-596.

Wu, Q.; Milota, M.R. 1995. Rheological behavior of Douglas-fir perpendicular to the grain at elevated temperatures. Wood and Fiber Science 27(3): 285-295.

Zhan, J.F.; Avramidis, S. 2017. Impact of conventional drying and thermal post-treatment on the residual stresses and shape deformations of larch lumber. Drying Technology 35(1):15-24.

Downloads

Published

2019-01-01

How to Cite

Fu, Z., Avramidis, S., Zhao, J., Cai, Y., & Zhou, Y. (2019). Effects of saturated vapor pre-steaming on drying strain in asian white birch: Experimentation and modelling. Maderas. Ciencia Y Tecnología, 21(1), 77–88. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3325

Issue

Section

Article