Bio-Coal Production With Agroforestry Biomass In Brazil

  • Lucas de Freitas Fialho
  • Angélica de Cássia Oliveira Carneiro
  • Ana Marcia Macedo Ladeira Carvalho
  • Clarissa Gusmão Figueiró
  • Carlos Miguel Simões da Silva
  • Mateus Alves Magalhães
  • Letícia Costa Peres
Keywords: Chemical composition, energy, pyrolysis, temperature, yield

Abstract

Pyrolysis is a promising technology for thermal conversion of lignocellulosic biomass into a higher added value fuel. The aim of this study was to analyze the potential of four agroforestry biomass to produce energy as a raw material or as a bio-coal. In this study, slow pyrolysis was conducted in three final temperatures to evaluate the bio-coal production of four agroforestry biomasses widely available in Brazil. The biomass used was sugarcane bagasse (Saccharum sp.), bamboo (Dendrocalamus giganteus), straw bean (Phaseolus vulgaris) and eucalypts wood chips (Eucalyptus sp.). In the first part was presented the raw biomasses proprieties, such as lignin, carbon, hydrogen and ash content. In the second part was showed the bio-coal proprieties, such as, gravimetric and fixed carbon yield, fixed carbon and ash content. These bio-coal results were showed as a function of final temperature of pyrolysis. The best energy indicators for bio-coal production, such as fixed carbon yield, high heating value, was found in the bamboo and eucalypts. The bagasse and straw bean biomasses possess high concentrations of ash and low lignin content when compared with the other biomasses assessed and are less suitable to produce bio-coal.

References

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). 1986. NBR 8112: Carvão vegetal: análise imediata. Rio de Janeiro, 8 p.

ASTM D240-02. 2007. Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter. American Society for Testing and Materials, Conshohocken, PA, USA.

ASTM D3174-04. 2010. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. American Society for Testing and Materials, Conshohocken, PA, USA.

BACH, Q.V.; SKREIBERG, O. 2016. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew Sustain Energy Rev 54: 665–77.

BAYSAL, E.; DEVECI, I.; TURKOGLU, T.; TOKER, H. 2017. Thermal analysis of oriental beech sawdust treated with some commercial wood preservatives. Maderas-Cienc Tecnol 19(3): 329 – 338.

CARRIÓN-PRIETO, P.; MARTÍN-RAMOS, P.; HERNÁNDEZ-NAVARROL, S.; SÁNCHEZ-SASTRE, L.F.; MARCOS-ROBLES, J.L.; MARTÍN-GIL, J. 2017. Valorization of Cistus ladanifer and Erica arborea shrubs for fuel: wood and bark thermal characterization. Maderas-Cienc Tecnol 19(4): 443 – 454.

CERQUEIRA, D.A.; FILHO, G.R.; MEIRELES, C.S. 2007. Optimization of sugarcane bagasse cellulose acetylation. Carbohydr Polym 69: 579–82.

DEMIRBAS, A.; DEMIRBAS, A.H. 2004. Estimating the Calorific Values of Lignocellulosic Fuels. Energy Explor Exploit 22: 135–144.

Deutsche institut für normung. 2011. DIN EN 15104: Determination of total content of carbon, hydrogen and nitrogen – Instrumental methods, CEN; Berlin 15.

DHYANI, V.; BHASKAR, T. 2017. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129: 695-716.

ELYOUNSSI, K.; BLIN, J.; HALIM, M. 2010. High-yield charcoal production by two-step pyrolysis. J. Anal. Appl. Pyrolysis 87: 138–143.

ENERGY POLICY ACT OF 2005. 2005. Public Law 109–58, 119 Stat. 594 p.

EUROPEAN COMMISSION. 2012. Roadmap 2050, Policy 1–9.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS - STATISTICS DIVISION – FAOSTAT. 2017. Available at: http://www.fao.org/faostat/en/#data/FO. Accessed in: 29 March 2018.

GOLDSCHIMID, O. 1971. Ultraviolet spectra. In: SARKANEN, K. V.; LUDWING, C. H. (Eds) Lignins. New York: Wiley Interscience, 241-266.

GOMIDE J.L.; DEMUNER B.J. 1986. Determinação do teor de lignina em material lenhoso: método Klason modificado. O Papel 47: 36-38.

GRASSMANN, G.S.; ANDRADE, C.R.; DIAS, A.F.; SILVA, F.G.; BRITO, J.O. 2016. Timber wastes torrefaction for energy use. Maderas-Cienc Tecnol 18(1): 105-112.

HAYKIRI-ACMA, H.; YAMAN, S.; KUCUKBAYRAK, S. 2010. Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Process Technol 91: 759–764.

HEINEMANN, A.B.; RAMIREZ-VILLEGAS, J.; SOUZA, T.L.P. O.; DIDONET, A. D.; DI STEFANO, J.G.; BOOTE, K.J.; JARVIS, A. 2016. Drought impact on rainfed common bean production areas in Brazil. Agric For Meteorol 225: 57–74.

HUANG, C.; HAN, L.; YANG, Z.; LIU, X. 2009. Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Management 29: 1793-1797.

JACALNE V. 1978. Above-Ground Biomass and the Growth of Bamboo Stands in the Philippines. Japan International Research Center for Agricultural Sciences, 1–7.

JENKINS, B.; BAXTER, L.; MILES, T.; MILES, T. 1998. Combustion properties of biomass. Fuel Process Technol 54: 17–46.

KWIETNIEWSKA, E.; TYS, J. 2014. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sustain Energy Rev 34: 491–500.

LIMAYEM, A; RICKE S.C. 2012. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38: 449-67.

NATH, A.J.; DAS, G.; DAS, A.K. 2008. Above ground biomass, production and carbon sequestration in farmer managed village bamboo grove in Assam, northeast India. J Am Bamboo Soc 21: 32–40.

OYEDUN, A.O.; LAM, K.L.; HUI, C.W. 2012. Charcoal production via multistage pyrolysis. Chinese J Chem Eng 20: 455–460.

PEREIRA, B.L.C.; CARNEIRO, A. DE C.O.; CARVALHO, A.M.M.L.; COLODETTE, J.L.; OLIVEIRA, A.C.; FONTES, M.P.F. 2013. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources 8: 4574–4592.

PORDESIMO, L.O.; EDENS, W.C.; SOKHANSANJ, S. 2004. Distribution of aboveground biomass in corn stover. Biomass and Bioenergy 26: 337–343.

RAMOS-CARMONA, S.; PÉREZ, J.F.; PELAEZ-SAMANIEGO, M.R.; BARRERA, R.; GARCIA-PEREZ, M. 2017. Effect of torrefaction temperature on properties of patula pine. Maderas-Cienc Tecnol 19(1): 39 – 50.

ROWELL, R.M.; PETTERSEN, R.; HAN, J.S.; ROWELL, J.S.; TSHABALALA, M.A. 2005. Cell Wall Chemistry. In: Handbook of Wood Chemistry and Wood Composites, Rowell, R.M. (Ed.). Boca Raton: CRC Press 121-138.

SCURLOCK, J.M.O.; DAYTON, D.C.; HAMES, B. 2000. Bamboo: an overlooked biomass resource? Biomass and Bioenergy 19(4): 229–244.

SERMYAGINA, E.; SAARI, J.; KAIKKO, J.; VAKKILAINEN, E. 2015. Hydrothermal carbonization of coniferous biomass: Effect of process parameters on mass and energy yields. J Anal Appl Pyrolysis 113: 551–6.

SHEN, D.K.; GU, S.; BRIDGWATER, A. V. 2010. The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydr Polym 82: 39–45.

SOKHANSANJ, S.; TURHOLLOW, A.; CUSHMAN, J.; CUNDIFF, J. 2002. Engineering aspects of collecting corn stover for bioenergy. Biomass and Bioenergy 23: 347–355.

TECHNICAL ASSOCIATION OF PULP AND PAPER INDUSTRY, 2007. T204 cm-97. Solvent extractives of wood and pulp. TAPPI test methods.

UNITED STATES OF AMERICA (USA). 2005. Public law 109–58, august 8.

VALVERDE, S.R.; SOARES, N.S.; SILVA, M.L.; JACOVINE, L.A.G.; NEIVA, S.A. 2004. Comportamento do mercado da madeira de eucalipto no Brasil. Biomassa & Energia 1: 393-403.

VARVEL, G.E.; VOGEL, K.P.; MITCHELL, R.B.; FOLLETT, R.F.; KIMBLE, J.M. 2008. Comparison of corn and switchgrass on marginal soils for bioenergy. Biomass and Bioenergy 32: 18–21.

VITOUSEK, P.M.; MENGE, D.N.; REED, S.C.; CLEVELAND, C.C. 2013. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc L. B Biol Sci 368.

VITOUSEK, P.M.; MENGE, D.N.L.; REED, S.C.; CLEVELAND, C.C. 2013. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of Royal Society B 368.

WANG, S.; DAI, G.; YANG, H.; LUO Z. 2017. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog Energy Combust Sci 62: 33-86.

WHITE, R.H. 1987. Effect of lignin content and extractives on the higher heating value of wood. Wood and Fiber Science 19(4): 446-452.

XIE, X.; GOODELL, B.; ZHANG, D.; NAGLE, D.C.; QIAN, Y.; PETERSON, M.L.; JELLISON, J. 2009. Characterization of carbons derived from cellulose and lignin and their oxidative behavior. Bioresource Technology 100: 1797-1802.

YANG, H.; YAN, R.; CHEN, H.; LEE, D.H.; ZHENG, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781–1788.

ZHOU, B.Z.; MAO-YI, F.; XIE, J.-Z.; XIAO-SHENG, Y.; LI, Z.-C. 2005. Ecological functions of bamboo forest: Research and Application. Journal of Forestry Research 16: 143–147.
Published
2018-11-19
How to Cite
de Freitas Fialho, L., de Cássia Oliveira Carneiro, A., Marcia Macedo Ladeira Carvalho, A., Gusmão Figueiró, C., Miguel Simões da Silva, C., Alves Magalhães, M., & Costa Peres, L. (2018). Bio-Coal Production With Agroforestry Biomass In Brazil. Maderas. Ciencia Y Tecnología, 21(3). Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/3535

Most read articles by the same author(s)