Changes in wood properties of chestnut wood structural elements with natural aging

Authors

  • Elif Topaloglu
  • Derya Ustaomer
  • Murat Ozturk
  • Emrah Pesman

Keywords:

Natural aging, service life, wood anatomy, wood properties, wooden structural elements

Abstract

Knowing the effects of natural aging on wood properties is important both for the conservation of historical wooden material and for reuse of aged wood. The aim of this study was to investigate the wood properties of old wooden elements not impregnated with any protective chemicals and taken from different parts of Zeytinlik houses in Giresun, Turkey. Test samples were prepared from old wooden elements and freshly cut chestnut timber. The anatomical, chemical, physical and mechanical properties were determined according to standard procedure, and the results were compared with those of recent wood specimen. As a result of the anatomical identification, it was determined that the wooden elements used in traditional Zeytinlik houses belong to species of Anatolian chestnut (Castanea sativa), and after an average service life of 88, 113 and 120 years, there was no change in the anatomical structure of the old wooden elements. Fourier transform infrared band characterization of old wood specimens revealed that hemicelluloses degraded and lignin structure changed on the surface of almost all specimens. Especially, the wood density values of the facade elements were smaller than that of recent wood specimen. Except for the modulus of rupture of window sill and rafter, all mechanical properties were significantly greater compared with those of recent wood specimen. The results of this research showed that old wood not damaged by fungi and insects could be evaluated for reuse.

Downloads

Download data is not yet available.

References

Ay, N.; Şahin, H. 2002a. Physical properties of Chestnut (Castanea sativa Mill.) wood obtained from Maçka-Çatak region. Artvin Çoruh University Journal of Forest Faculty 3(1): 63-71. http://ofd.artvin.edu.tr/en/pub/issue/2251/29654

Ay, N.; Şahin, H. 2002b. Some mechanical properties of chestnut (Castanea sativa Mill.) Wood obtained from Maçka-Çatak region. Artvin Çoruh University Journal of Forest Faculty 3(1): 87-95. http://ofd.artvin.edu.tr/en/pub/issue/2251/29657

BAB, 2000. Bs200Pro Image System Software ISO 9001:2000.

Bektas, İ.; Alma, M.H.; Goker, Y.; As, N.; Erdas, O. 2004. Effect of 180 years of service on various physical and mechanical properties of salvaged Crimean juniper wood. Forest Prod J 54(12): 217-219. https://search.proquest.com/docview/214632748?pq-origsite=gscholar&fromopenview=true

Bektas, İ.; Alma, M.H.; As, N. 2005. The effect of 120 years of service on various physical and mechanical properties of Scots pine wood used as roof beam. Wood Res-Slovakia 50(1): 27-32.

Borgin, K.; Faix, O.; Schweers, W. 1975. The effect of aging on lignins of wood. Wood Sci Technol 9(3): 207-211. https://doi.org/10.1007/bf00364638

Dogu, D.; Yilgör, N.; Mantanis, G.; Tuncer, F.D. 2017. Structural evaluation of a timber construction element originating from the great metéoron monastery in Greece. BioResources 12(2): 2433-2451. https://doi.org/10.15376/biores.12.2.2433-2451

Emmerich, L.; Wülfing, G.; Brischke, C. 2019. The Impact of Anatomical Characteristics on the Structural Integrity of Wood. Forests 10(2): 199. https://doi.org/10.3390/f10020199

Esteves, B.; Velez Marques, A.; Domingos, I.; Pereira, H. 2013. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas-Cienc Tecnol 15(2): 245-258. https://doi.org/10.4067/s0718-221x2013005000020

Feist, W.; Mraz, E.A. 1978. Comparison of outdoor and accelerated weathering of unprotected softwoods. Forest Prod J 28(3): 38-42.

Feist, W.C. 1983. Weathering and protection of wood. In Proceedings of the “Seventy-ninth Annual Meeting of the American Wood-Preservers' Association”, 17-20 April, Kansas City, MO. Stevensville, MD: American Wood-Preservers' Association; 79: 195-205.

Fengel, D. 1991. Aging and fossilization of wood and its components. Wood Sci Technol 25(3):153–177. https://doi.org/10.1007/bf00223468

Guo, J.; Zhou, H.; Stevanic, J.S.; Dong, M.; Yu, M.; Salmén, L.; Yin, Y. 2018. Effects of ageing on the cell wall and its hygroscopicity of wood in ancient timber construction. Wood Sci Technol 52: 131-147. https://doi.org/10.1007/s00226-017-0956-z

Han, L.; Wang, K.; Wang, W.; Guo, J.; Zhou, H. 2019. Nanomechanical and Topochemical Changes in Elm Wood from Ancient Timber Constructions in Relation to Natural Aging. Materials 12(5): 786. https://doi.org/10.3390/ma12050786

IBM. 2020. SPSS Statistics Version 22.0. https://www.ibm.com/support/pages/spss-statistics-220-available-download

Inagaki, T.; Yonenobu, H.; Tsuchikawa, S. 2008. Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood. Appl Spectrosc 62(8): 860-865. https://doi.org/10.1366/000370208785284312

InsideWood. 2018. Available at: http://insidewood.lib.ncsu.edu/search?3 Accessed in: October 10th 2019.

International Organization for Standardization. 2014. ISO 13061-1: Physical and mechanical properties of wood — Test methods for small clear wood specimens — Part 1: Determination of moisture content for physical and mechanical tests. ISO, Geneva, Switzerland. https://www.iso.org/standards.html

International Organization for Standardization. 2014. ISO 13061-2: Physical and mechanical properties of wood — Test methods for small clear wood specimens — Part 2: Determination of density for physical and mechanical tests. ISO, Geneva, Switzerland. https://www.iso.org/standards.html

International Organization for Standardization. 2014. ISO 13061-3: Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 3: Determination of ultimate strength in static bending. ISO, Geneva, Switzerland. https://www.iso.org/standards.html

International Organization for Standardization. 2014. ISO 13061-4: Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 4: Determination of modulus of elasticity in static bending. ISO, Geneva, Switzerland. https://www.iso.org/standards.html

International Organization for Standardization. 2014. ISO 13061-17. Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 17: Determination of ultimate stress in compression parallel to grain. ISO, Geneva, Switzerland. https://www.iso.org/standards.html

International Organization for Standardization. 2011. ISO 15686–1: Buildings and constructed assets—Service life planning—Part 1: General principles and framework. ISO, Geneva, Switzerland. https://www.iso.org/standards.html

Ives, E. 2001. A Guide to Wood Microtomy: Making Quality Microslides of Wood Sections. Ipswich, United Kingdom.

Kačík, F.; Šmíra, P.; Kačíková, D.; Reinprecht, L.; Nasswettrova, A. 2014. Chemical changes in fir wood from old buildings due to ageing. Cell Chem Technol 48(1-2): 79-88. http://www.cellulosechemtechnol.ro/pdf/CCT1-2(2014)/p.79-88.pdf

Kránitz, K.; Sonderegger, W.; Bues, C.T.; Niemz, P. 2016. Effects of aging on wood: a literature review. Wood Sci Technol 50(1): 7-22. https://doi.org/10.1007/s00226-015-0766-0

Liu, X.Y.; Timar, M.C.; Varodi, A.M.; Sawyer, G. 2017. An investigation of accelerated temperature-induced ageing of four wood species: colour and FTIR. Wood Sci Technol 51(2): 357-378. https://doi.org/10.1007/s00226-016-0867-4

Machado, J.S.; Pereira, F.; Quilhó, T. 2019. Assessment of old timber members: Importance of wood species identification and direct tensile test information. Constr Build Mater 207: 651-660. https://doi.org/10.1016/j.conbuildmat.2019.02.168

Madhoushi, M. 2016. Species and mechanical strengths of wood members in a historical timber building in Gorgan (North of Iran). BioResources 11(2): 5169-5180. https://doi.org/10.15376/biores.11.2.5169-5180

Marchessault, R.; Liang, C. 1962. The infrared spectra of crystalline polysaccharides. VIII. Xylans. J Polym Sci A1 59(168): 357-378. https://doi.org/10.1002/pol.1962.1205916813

Matsuo, M.; Yokoyama, M.; Umemura, K.; Sugiyama, J.; Kawai, S.; Gril, J.; Kubodera, S.; Mitsutani, T.; Ozaki, H.; Sakamoto, M. 2011. Aging of wood: analysis of color changes during natural aging and heat treatment. Holzforschung 65(3): 361-368. https://doi.org/10.1515/hf.2011.040

Merev, N. 1998. Doğu Karadeniz Bölgesindeki Doğal Angiospermae Taksonlarının Odun Anatomisi, Trabzon, Türkiye: KTÜ Basımevi, ss. 108-115.

Merev, N. 2003. Odun Anatomisi ve Odun Tanıtımı, Trabzon, Türkiye: KTÜ Basımevi, ss. 127-128.

Mohebby, B. 2008. Application of ATR infrared spectroscopy in wood acetylation. J Agr Sci Technol 10(3): 253-259. https://www.sid.ir/en/journal/ViewPaper.aspx?id=108201

Müller, G.; Schöpper, C.; Vos, H.; Kharazipour, A.; Polle, A. 2009. FTIR-ATR spectroscopic analyses of changes in wood properties during particle-and fibreboard production of hard-and softwood trees. BioResources 4(1): 49-71. https://bioresources.cnr.ncsu.edu/BioRes_04/BioRes_04_1_0049_Muller_SVKP_FTIR_ATR_Anal_Particlebd_Fiberbd_HW_SW_366.pdf

Nilsson, T.; Rowell, R. 2012. Historical wood–structure and properties. J Cult Herit 13(3): S5-S9. https://doi.org/10.1016/j.culher.2012.03.016

Panshin, A.J.; Zeeuw, C. 1970. Textbook of Wood Technology. Volume I, McGraw-Hill, Inc. United States of America.

Sonderegger, W.; Kránitz, K.; Bues, C.T.; Niemz, P. 2015. Aging effects on physical and mechanical properties of spruce, fir and oak wood. J Cult Herit 16(6): 883-889. https://doi.org/10.1016/j.culher.2015.02.002

Sousa, H.S.; Branco, J.M.; Lourenço, P.B. 2014. Characterization of cross-sections from old chestnut beams weakened by decay. Int J Archit Herit 8(3): 436-451. https://doi.org/10.1080/15583058.2013.826303

Stefke, B.; Windeisen, E.; Schwanninger, M.; Hinterstoisser, B. 2008. Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods. Anal Chem 80(4): 1272-1279. https://doi.org/10.1021/ac7020823

Tarmian, A.; Mastouri, A. 2019. Changes in moisture exclusion efficiency and crystallinity of thermally modified wood with aging. iForest 12(1): 92-97. https://doi.org/10.3832/ifor2723-011

Thaler, N.; Humar, M. 2013. Performance of oak, beech and spruce beams after more than 100 years in service. Int Biodeter Biodegr 85: 305-310. https://doi.org/10.1016/j.ibiod.2013.08.020

Thaler, N.; Žlahtič, M.; Humar, M. 2014. Performance of recent and old sweet chestnut (Castanea sativa) wood. Int Biodeter Biodegr 94: 141-145. https://doi.org/10.1016/j.ibiod.2014.06.016

Tintner, J.; Smidt, E.; Tieben, J.; Reschreiter, H.; Kowarik, K.; Grabner, M. 2016. Aging of wood under long-term storage in a salt environment. Wood Sci Technol 50(5): 953-961. https://doi.org/10.1007/s00226-016-0830-4

Ucar, G.; Meier, D.; Faix, O.; Wegener, G. 2005. Analytical pyrolysis and FTIR spectroscopy of fossil Sequoiadendron giganteum (Lindl.) wood and MWLs isolated hereof. Holz Roh Werkst 63(1): 57-63. https://doi.org/10.1007/s00107-004-0530-x

Vurdu, H.; Kesik, H.; Kurtuluș, O.; Özkan, O. 2013. Some physical and mechanical properties of antique and fresh cut Pinus sylvestris and Abies nordmanniana subsp. bornmulleriana woods. Pro Ligno 9(4): 562-567. http://www.proligno.ro/en/articles/2013/4/Vurdu_final.pdf

Wheeler, E.; Baas, P.; Gasson, P. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull 10(3): 219-332. https://www.iawa-website.org/uploads/soft/Abstracts/IAWA%20list%20of%20microscopic%20features%20for%20hardwood%20identification.pdf

Williams, R.S. 2005. Weathering of wood. In Handbook of wood chemistry and wood composites. Rowell, R.M. (ed.). Taylor and Francis CRC Press, Boca Raton, Florida, USA. Volume 7, pp. 142–178.

Yokoyama, M.; Gril, J., Matsuo, M.; Yano, H.; Sugiyama, J.; Clair, B.; Kubodera, S.; Mistutani, T.; Sakamoto, M.; Ozaki, H. 2009. Mechanical characteristics of aged Hinoki wood from Japanese historical buildings. C R Phys 10(7): 601-611. https://doi.org/10.1016/j.crhy.2009.08.009

Yorur, H.; Kurt, S.; Yumrutas, I. 2014. The effect of aging on various physical and mechanical properties of scotch pine wood used in construction of historical Safranbolu houses. Drvna Ind 65(3): 191-196. https://doi.org/10.5552/drind.2014.1328

Downloads

Published

2021-01-01

How to Cite

Topaloglu, E. ., Ustaomer, D. ., Ozturk, M. ., & Pesman, E. . (2021). Changes in wood properties of chestnut wood structural elements with natural aging. Maderas-Cienc Tecnol, 23, 1–12. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4513

Issue

Section

Article