Shear and adhesion strength of open and closed system heat-treated wood samples

Authors

  • Ahmet Can
  • Tomasz Krystofiak
  • Barbara Lis

Keywords:

Heat treatment, mechanical properties, Pinus sylvestris, pull-off adhesion, shear strength, varnish

Abstract

This paper investigated the effects of heat treatment in open (atmospheric pressure) and a closed (under pressure) system on the shear and adhesion strength of Scots pine (Pinus sylvestris) wood. In addition, pull-off adherence testing was carried out of the coatings with water-based, polyurethane-based and oil/wax-based varnishes. Shear strength decreased significantly after heat treatment in Scots pine (31 % to 39 %) in open system, while it decreased between 2 % and 38% in the closed system without glue. The shear strength of the wood samples glued with glue was higher than the samples without glue at laboratory scale. The lower shear strength of modified wood could be attributed to other factors, such as the reduced chemical bonding or mechanical interlocking of adhesives, and the reduced strength of brittle modified wood substrate. With increasing heat treatment temperature adherence decreased. Maximum pull-off adhesion (4,80 MPa) was observed in the control samples coated with PUR.

Downloads

Download data is not yet available.

References

Ahola, P. 1995. Adhesion between paints and wooden substrates: effects on pre-treatment and weathering of wood. Mater Struct 28: 350–356.

https://doi.org/10.1007/BF02473151

Allen, K.W. 1987. A review of contemporary views of theories of adhesion. J Adhesion 21(3-4): 261–277. https://doi.org/10.1080/00218468708074974

Bastani, A.; Adamopoulos, S.; Militz, H. 2015. Water uptake and wetting behaviour of furfurylated, N-methylol melamine modified and heat-treated wood. Eur J Wood Wood Prod 73 (5): 627-634. https://doi.org/10.1007/s00107-015-0919-8

Bayani, S.; Taghiyari, H.R.; Papadopoulos, A.N. 2019. Physical and mechanical properties of thermally-modified beech wood impregnated with silver nano-suspension and their relationship with the crystallinity of cellulose. Polymers 11(10): 1538. https://doi.org/10.3390/polym11101538

Boonstra, M.J.; Pizzi, A.; Rigolet, S. 2006. Correlation of 13C‐NMR analysis with fungal decay tests of polymeric structural wood constituents. I. Basidiomycetes. J Appl polym Sci 101(4): 2639-2649. https://doi.org/10.1002/app.24233

Borrega, M.; Karenlampi, P.P. 2010. Hygroscopicity of heat-treated Norway Spruce (Picea abies) wood. Eur J Wood Prod 68(2): 233-235. https://doi.org/10.1007/s00107-009-0371-8

British Standards Institution. BSI. 2003. BSI-EN 205: Adhesives. Wood adhesives for non-structural applications. Determination of tensile shear strength of lap joints. United Kingdom.

Byron, P.R.; Dalby, R.N. 1987. Effects of heat treatment on the permeability of polyvinyl alcohol films to a hydrophilic solute. J Pharm Sci 76(1): 65-67. https://doi.org/10.1002/jps.2600760118

Candelier, K.; Dumarçay, S.; Pétrissans, A.; Desharnais, L.; Gérardin, P.; Pétrissans, M. 2013a. Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: Nitrogen or vacuum. Polym Degrad Stab 98(2): 677‒681. https://doi.org/10.1016/j.polymdegradstab.2012.10.022

Candelier, K.; Dumarçay, S.; Pétrissans, A.; Gérardin, P.; Pétrissans, M. 2013b. Comparison of mechanical properties of heat-treated beech wood cured under nitrogen or vacuum. Polym Degrad Stab 98(9): 1762-1765.https://doi.org/10.1016/j.polymdegradstab.2013.05.026

Devi, R.R.; Maji, T.K.; Banerjee, A.N. 2004. Studies on dimensional stability and thermal properties of rubber wood chemically modified with styrene and glycidyl methacrylate. J Appl Polym Sci 93: 1938-1945. https://doi.org/10.1002/app.20657

Ekstedt, J. 2002. Studies on the barrier properties of exterior wood coatings. PhD thesis (No. TRITA-BYMA 2002:5), Royal Institute of Technology, Building Materials, Stockholm, Swedish.

Eurostat. 2019. Building industry. https://ec.europa.eu/eurostat/data/database

Esteves, B.; Pereira, H. 2009. Wood modification by heat treatment: A review. BioResources 4(1): 370-404.

Ferrari, S.; Cuccui, I.; Allegretti, O. 2013. Thermo-vacuum modification of some European softwood and hardwood species treated at different conditions. BioResources 8(4): 1100-1109. https://doi.org/10.15376/biores.8.1.1100-1109

Goli, G.; Cremonini, C.; Negro, F.; Zanuttini, R.; Fioravanti, M. 2014. Physical-mechanical properties and bonding quality of heat treated poplar (I-214) and ceiba plywood. iForest 8(5): 687-692. http://dx.doi.org/10.3832/ifor1276-007

Hering, S.; Keunecke, D.; Niemz, P. 2012. Moisture dependent orthotropic elasticity of beech wood. Wood Sci and Technol 46: 927-938. http://dx.doi.org/10.1007/s00226-011-0449-4

Hill, C. 2006. Wood modification chemical, thermal and other processes. John Wiley & Sons, Inc.: San Francisco, CA, USA. http://dx.doi.org/10.1002/0470021748

Homan, W.J.; Jorissen, A.J. 2004. Wood modification developments. Heron 49(4): 360-369.

Inari, G.N.; Petrissans, M.; Gerardin, P. 2007. Chemical reactivity of heat-treated wood. Wood Sci Technol 41: 157–168. https://doi.org/10.1007/s00226-006-0092-7

International Standard. 2002. ISO4624: Paints and varnishes-Pull-off test for adhesion. Genève, Switzerland.

Jiang, F.; Li, T.; Li, Y.; Zhang, Y.; Gong, A.; Dai, J.; Hitz, E.; Luo, W. 2017. Wood-based nanotechnologies toward sustainability. Adv Mater 30(1): 1–39.

https://doi.org/10.1002/adma.201703453

Kartal, S.N. 2006. Combined effect of boron compounds and heat treatments on wood properties: boron release and decay and termite resistance. Holzforschung 60(4): 455-458. https://doi.org/10.1515/HF.2006.072

Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. 2011. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24): 5438-5466. https://doi.org/10.1002/anie.201001273

Kocaefe, D.; Poncsak, S.; Dore, G.; Younsi, R. 2008. Effect of heat treatment on the wettability of White ash and soft maple by water. Holz Roh Werkst 66(5): 355-361. http://dx.doi.org/10.1007/s00107-008-0233-9

Kol, S.H.; Özbay, G.; Altun, S. 2009. Shear strength of heat-treated tali (Erythrophleum ivorense) and iroko (Chlorophora excelsa) woods, bonded with various adhesives. BioResources 4(4): 1545–1554.

Korkut, S.; Budakci, M. 2009. Effect of high-temperature treatment on the mechanical properties of Rowan (Sorbus aucuparia L.) wood. Dry Technol 27: 1240–1247.

https://doi.org/10.1080/07373930903267161

Kutnar, A.; Kričej, B.; Pavlič, M.; Petrič, M. 2013. Influence of treatment temperature on wettability of Norway spruce thermally modified in vacuum. J Adhes Sci Tech 27(9): 963-972. https://doi.org/10.1080/01694243.2012.727168

Kwon, J.H.; Hill, C.A.S.; Ormondroyd, G.A.; Karim, S. 2007. Changes in the cell wall volume of a number of wood species due to reaction with acetic anhydride. Holzforschung 61:138–142. https://doi.org/10.1515/HF.2007.025

Larnoy, E.; Karaca, A.; Gobakken, L.R.; Hill, C.A.S. 2018. Polyesterification of wood using sorbitol and citric acid under aqueous conditions. Int Wood Prod J 9(2): 66-73. https://doi.org/10.1080/20426445.2018.1475918

Lee, S.; Wang, S. 2006. Biodegradable polymers/bamboo fiber biocomposite with biobased coupling agent. Compos Part A 37(1): 80–91.

https://doi.org/10.1016/j. compositesa.2005.04.015

Lee, S.H.; Ashaari, Z.; Lum, W.C.; Halip, J.A.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Tahir, P. M. 2018. Thermal treatment of wood using vegetable oils: A review. Constr Build Mater 181: 408-419. https://doi.org/10.1016/j.conbuildmat.2018.06.058

Miyagawa, H.; Mohanty, A.K.; Burgueno, R.; Drzal, L.T.; Misra, M. 2007. Novel biobased resins from blends of functionalized soybean oil and unsaturated polyester resin. J Polym Phys Part B 45(6): 698–704. https://doi.org/10.1002/polb

Ozcan, S.; Ozcifci, A.; Hiziroglu, S.; Toker, H. 2012. Effects of heat treatment and surface roughness on bonding strength. Constr Build Mater 33: 7–13.

https://doi.org/10.1016/j.conbuildmat.2012.01.008

Ozdemir, T.; Hiziroglu, S. 2007. Evaluation of surface quality and adhesion strength of treated solid wood. J Mater Process Technol 186(1-3): 311–314. https://doi.org/10.1016/j.jmatprotec.2006.12.049

Özdemir, T.; Hiziroglu, S.; Kocapınar, M. 2015. Adhesion of Cellulosic Varnish Coated Wood Species as Function of Their Surface Roughness. Adv Mater Sci Eng 1-5. http://dx.doi.org/10.1155/2015/525496

Petersen, K.; Nielsen, P.V.; Olsen, M.B. 2001. Physical and mechanical properties of biobased materials-starch, polylactate and polyhydroxybutyrate. Starch Staerke 53(8): 356–361. https://doi.org/10.1002/1521-379X(200108)53:8<356::AID-STAR356>3.0.CO;2-7

Rusch, H. 1973. Thermal degradation of wood at temperatures up to 200 ºC - partI; strenght properties of dried wood after heat treatment. Holz Roh Werkst 31: 273-281.

Sangermano, M.; Malucelli, G.; Amerio, E.; Priola, A.; Billi, E.; Rizza, G. 2005. Photopolymerization of epoxy coatings containing silica nanoparticles. Prog Org Coat 54(2): 134-138. https://doi.org/10.1016/j.porgcoat.2005.05.004

Sernek, M.; Boonstra, M.; Pizzi, A.; Despres, A.; Gérardin, P. 2008. Bonding performance of heat treated wood with structural adhesives. Holz Roh Werkst 66(3): 173–180. https://doi.org/10.1007/s00107-007-0218-0

Sivrikaya, H.; Can, A.; de Troya, T.; Conde, M. 2015. Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrupes bajulus. Maderas-Cienc Tecnol 17(3): 559-570. http://dx.doi.org/10.4067/S0718-221X2015005000050.

Söğütlü, C.; Nzokou, P.; Koç, I.; Tutgun, R.; Döngel, N. 2016. The effects of surface roughness on varnish adhesion of wood materials. J Coat Technol Res 13(5): 863-870. https://doi.org/10.1007/s11998-016-9805-5

Sönmez, A.; Budakci, M.; Pelit, H. 2011. The effect of the moisture content of wood on the layer performance of water-borne varnishes. BioResources 6(3): 3166-3178. https://doi.org/10.15376/biores.6.3.3166-3177

Suttie, E.; Hill, C.; Sandin, G.; Kutnar, A.; Ganne-Chédeville, C.; Lowres, F. et al. 2017. Environmental assessment of bio-based building materials. Perform Bio based Build Mater Chapter 9: 547-591. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100982-6.00009-4

Taghiyari, H.R. 2011. Study on the effect of nano-silver impregnation on mechanical properties of heat-treated Populus nigra. Wood Sci Technol 45(3): 399-404. http://dx.doi.org/10.1007/s00226-010-0343-5.

Taghiyari, H.R. 2013. Effects of heat-treatment on permeability of untreated and nanosilver-impregnated native hardwoods. Maderas-Cienc Tecnol 15(2): 183-194.

http://dx.doi.org/10.4067/S0718-221X2013005000015

Taghiyari, H.R.; Enayati, A.; Gholamiyan, H. 2013. Effects of nano-silver impregnation on brittleness, physical and mechanical properties of heat-treated hardwoods. Wood Sci Technol 47(3): 467-480. http://dx.doi.org/10.1007/s00226-012-0506-7

Taghiyari, H.R.; Moradi Malek, B. 2014. Effect of heat treatment on longitudinal gas and liquid permeability of circular and square-shaped native hardwood specimens. Heat Mass Transfer 50(7): 1125-1136. http://dx.doi.org/10.1007/s00231-014-1319-z

Taghiyari, H.R.; Samadarpour, A. 2015. Effects of nanosilver-impregnation and heat treatment on coating pulloff adhesion strength on solid wood. Drvna Ind 66(4): 321–327. https://doi.org/10.5552/drind.2015.1419

Taghiyari, H.R.; Bayani, S.; Militz, H.; Papadopoulos, A.N. 2020. Heat Treatment of Pine Wood: Possible Effect of Impregnation with Silver Nanosuspension. Forests 11(4): 466. https://doi.org/10.3390/f11040466

Weiss, M.; Haufe, J.; Carus, M.; Brand, M.; Bringezu, S.; Hermann, B.; Patel, M.K. 2012. A review of the environmental impacts of biobased materials. J Ind Ecol 16(1): 169-180. https://doi.org/10.1111/j.1530-9290.2012.00468.x

Downloads

Published

2021-01-01

How to Cite

Can, A. ., Krystofiak, T. ., & Lis, B. . (2021). Shear and adhesion strength of open and closed system heat-treated wood samples. Maderas-Cienc Tecnol, 23. Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/4631

Issue

Section

Article