Effects of artificial weathering on the surface properties of coated radiata pine
DOI:
https://doi.org/10.4067/s0718-221x2023000100429Keywords:
Artificial weathering, color, glossiness, Pinus radiata, varnish applicationsAbstract
Radiata pine boards were coated with two different methods A and B both beginning with a hydro primer and finishing with a mat oil but method A using an acrylic high gloss coating and method B three layers of an acrylic sealer in between. The samples were subjected to aging processes for 144 h, 288 h, and 432 h by using UV-A 340 nm lamps. The CIE L*a*b* and CIE L*C*H* coordinates were determined (L*, a*, b*, C*, ho*, ΔE*), gloss (perpendicular (⊥) and parallel (//) to the grain at 20°, 60°, and 85° angles) and surface adhesion strength via the pull-off method were tested before and after weathering. Results have shown that lightness (L*), decreases with weathering for both varnish applications with a higher decrease for the B coating system. Redness increased for both applications with no significant differences. At the same time there was a yellowing of the samples along the weathering period. Parallel and perpendicular gloss decreased for 20º and 60º angles while it increased for 85º angle. The adhesion strength of method A was higher and its decrease with weathering was smaller than for method B. Both varnish applications have proven to confer some protection against wood discoloration, but method A showed the best results and is therefore the best method to be used by radiata pine.
Downloads
References
American Society for Testing and Materials. 2007. Standard practice for calculation or color tolerances and color, differences from instrumentally measured color coordinates. ASTM D 2244-3. ASTM International, West Conshohocken, PA.
American Society for Testing and Materials. 1995. Standard test method for pull-off strength of coatings using portable adhesion testers. ASTM D 4541. ASTM International, West Conshohocken, PA.
American Society for Testing and Materials. 2006. Standard practice for operating fluorescent light apparatus for UV exposure of nonmetallic materials. ASTM G 154-06. ASTM International, West Conshohocken, PA.
Arpaci, S.S.; Tomak, E.D.; Ermeydan, M.A.; Yildirim, I. 2021. Natural weathering of sixteen wood species: Changes on surface properties. Polym Degrad Stab 183: 109415. https://doi.org/10.1016/j.polymdegradstab.2020.109415
Ayata, U. 2019. Effects of artificial weathering on the surface properties of ultraviolet varnish applied to lemonwood (Citrus limon L. Burm.). Bioresources 14(4): 8313-8323. https://doi.org/10.15376/biores.14.4.8313-8323
Ayata, U.; Esteves, B.; Gurleyen, L.; Cakicier, N.; Ferreira, J.; Domingos, I.; Turk, M. 2021a. Effect of accelerated ageıng on some surface properties of UV-coated hackberry (Celtis australis L.) wood parquet. Drewno 64(208): 17-33. https://doi.org/10.12841/wood.1644-3985.383.09
Ayata, U.; Cakicier, N.; Gurleyen, L. 2021b. Determination of some surface properties of UV curable varnish-applied cedar wood after artificial aging application. Furniture Wooden Mater Res J 4: 145-154. https://doi.org/10.33725/mamad.1005120 (In Turkish)
Ayata, U.; Sahin, S.; Esteves, B.; Gurleyen, L. 2017. Effect of thermal aging on colour and glossiness of UV system varnish-applied laminated parquet layers. BioResources 13(1): 861-868. https://doi.org/10.15376/biores.13.1.861-868
Bekhta, P.; Proszyk, S.; Lis, B.; Krystofiak, T. 2014. Gloss of thermally densified alder (Alnus glutinosa Goertn.), beech (Fagus sylvatica L.), birch (Betula verrucosa Ehrh.), and pine (Pinus sylvestris L.) wood veneers. Eur J Wood Prod 72(6): 799-808. https://doi.org/10.1007/s00107-014-0843-3
Buchner, J. 2021. Do biotic and abiotic factors combine to affect the weathering of wood in use class 3?. PhD Thesis. École centrale de Nantes, Nantes, France.
Cavus, V. 2021. Aging performance of mulberry wood with UV varnish applied and its mechanical properties. BioResources 16: 6791-6798. https://doi.org/10.15376/biores.16.4.6791-6798
Demirci, Z.; Sonmez, A.; Budakçı, M. 2013. Effect of thermal ageing on the gloss and the adhesion strength of the wood varnish layers. BioResources 8(2): 1852-1867. https://doi.org/10.15376/biores.8.2.1852-1867
Dickie, R.A. 1994. Chemical origins of paint performance. J Coat Technol 66(834): 29-37.
Esteves, B.; Ayata, U.; Gurleyen, L. 2019. Effect of heat treatment on the colour and glossiness of black locust, wild pear, linden, alder and willow wood. Drewno 62(203): 39-52. https://doi.org/10.12841/wood.1644-3985.267.10
Esteves, B.M.; Herrera, R.; Santos, J.; Carvalho, L.; Nunes, L.; Ferreira, J.; Domingos, I.J.; Cruz-Lopes, L. 2020. Artificial weathering of heat-treated pines from the Iberian Peninsula. BioResources 15(4): 9642-9655. https://doi.org/10.15376/biores.15.4.9642-9655
Feist, W.C. 1982. Weathering of wood in structural uses. USDA Forest Service, Forest Products Laboratory. USA.
Goodell, B.; Winandy, J.E.; Morrell, J.J. 2020. Fungal degradation of wood: Emerging data, new insights and changing perceptions. Coatings 10(12): 1210. https://doi.org/10.3390/coatings10121210
Grüll, G.; Tscherne, F.; Spitaler, I.; Forsthuber, B. 2014. Comparison of wood coating durability in natural weathering and artificial weathering using fluorescent UV-lamps and water. Eur J Wood Products 72(3): 367-376.
Humar, M.; Vek, V.; Bučar, B. 2008. Properties of blue-stained wood. Drvna Industrija 59(2): 75-79. https://hrcak.srce.hr/25409
International Organization for Standardization. ISO. 1994. Paints and varnishes - determination of specular gloss of non-metallic paint films at 20 degrees, 60 degrees and 85 degrees. ISO 2813. ISO, Geneva, Switzerland.
Jankowska, A. 2015. The study of influence artificial weathering on color changes of selected wood species from Africa. SGGW 92: 131-136. https://sgw0.bg.sggw.pl/exlibris/aleph/a22_1/apache_media/IJHX95X7GRA232CU5L6DYCQBH8DYT8.pdf
Jankowska, A.; Szczęsna, M. 2011. The study of colour changes of chosen species of wood from southeast asia caused by transparent coatings and exposure to sunlight. Drewno 54: 51–59.
Jankowska, A.; Boruszewski, P.; Drożdżek, M.; Rębkowski, B.; Kaczmarczyk, A.; Skowrońska, A. 2018. The role of extractives and wood anatomy in the wettability and free surface energy of hardwoods. BioResources 13(2): 3082–3097. https://doi.org/10.15376/biores.13.2.3082-3097
Jankowska, A.; Wawryszuk, A.; Mazurek, A. 2014. The influence of artificial weathering on changes in color of selected coniferous wood species. SGGW 85: 95-100. http://148.81.185.134/F/?func=service&doc_library=sgw04&doc_number=000001298&line_number=0004&func_code=WEB-FULL&service_type=MEDIA
Karamanoglu, M.; Akyildiz, M.H. 2013. Colour, gloss and hardness properties of heat-treated wood exposed to accelerated weathering. Pro Ligno 9(4): 729-738. http://www.proligno.ro/ro/articles/2013/4/Karamanoglu_final.pdf
Kataoka, Y.; Kiguchi, M.; Fujiwara, T.; Evans, P.D. 2005. The effects of within-species and between-species variation in wood density on the photodegradation depth profiles of sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtuse). J Wood Sci 51: 531–536. https://doi.org/10.1007/s10086-004-0685-4
Kataoka, Y.; Kiguchi, M.; Williams, R.S.; Evans, P.D. 2007. Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Holzforschung 61(1): 23-27 https://doi.org/10.1515/HF.2007.005
Kishino, M.; Nakano, T. 2004. Artificial weathering of tropical woods. Part 2: Color change. Holzforschung 58(5): 558-565. https://doi.org/10.1515/HF.2004.085
Kropat, M.; Hubbe, M.A.; Laleicke, F. 2020. Natural, accelerated, and simulated weathering of wood: a review. BioResources 15(4): 9998-10062. https://bioresources.cnr.ncsu.edu/resources/natural-accelerated-and-simulated-weathering-of-wood-a-review/
Kucuktuvek, M.; Baysal, E.; Turkoglu, T.; Peker, H.; Gunduz, A.; Toker, H. 2017. Surface characteristics of scots pine wood heated at high temperatures after weathering, Wood Res 62(6): 905-918. http://www.woodresearch.sk/wr/201706/08.pdf
Liu, R.; Zhu, H.; Li, K.; Yang, Z. 2019. Comparison on the aging of woods exposed to natural sunlight and artificial xenon light. Polymers 11(4): 709. https://doi.org/10.3390/polym11040709
Liu, X.Y.; Timar, M.C.; Varodi, A.M.; Sawyer, G. 2017. An investigation of accelerated temperature-induced ageing of four wood species: colour and FTIR. Wood Sci Technol 51(2): 357-378. https://doi.org/10.1007/s00226-016-0867-4
Nzokou, P.; Kamdem, D.P.; Temiz, A. 2011. Effect of accelerated weathering on discoloration and roughness of finished ash wood surfaces in comparison with red oak and hard maple. Prog Org Coat 71(4): 350-354. https://doi.org/10.1016/j.porgcoat.2011.03.028
Olărescu, C.M.; Câmpean, M.; Varodi, A. 2014. Colour and dimensional modifications of solid wood panels made from heat-treated spruce wood after three months of outdoor exposure. Pro Ligno 10(3): 46-54. http://proligno.ro/ro/articles/2014/3/olarescu.pdf
Ozgenc, O.; Hiziroglu, S.; Yildiz, U.C. 2012. Weathering properties of wood species treated with different coating applications. BioResources 7(4): 4875-4888. https://bioresources.cnr.ncsu.edu/resources/weathering-properties-of-wood-species-treated-with-different-coating-applications/
Pánek, M.; Oberhofnerová, E.; Zeidler, A.; Šedivka, P. 2017. Efficacy of hydrophobic coatings in protecting oak wood surfaces during accelerated weathering. Coatings 7(10): 172. https://doi.org/10.3390/coatings7100172
Reinprecht, L.; Mamoňová, M.; Pánek, M.; Kačík, F. 2018. The impact of natural and artificial weathering on the visual, colour and structural changes of seven tropical woods. Eur J Wood Prod 76: 175–190. https://doi.org/10.1007/s00107-017-1228-1
Şahin, S.; Ayata, U.; Bal, B.C.; Esteves, B.; Can, A.; Sivrikaya, H. 2020. Determination of some wood properties and response to weathering of Citrus limon (L.) Burm wood. BioResources 15(3): 6840-6850. https://doi.org/10.15376/biores.15.3.6840-6850
Sandberg, D. 1999. Weathering of radial and tangential wood surfaces of pine and spruce. Holzforschung 53(4): 355-364. https://doi.org/10.1515/HF.1999.059
Schnabel, T.; Zimmer, B.; Petutschnigg, A.J. 2009. On the modelling of colour changes of wood surfaces. Eur J Wood Prod 67(2): 141-149. https://doi.org/10.1007/s00107-008-0293-x
Silva, J.O.; Pastore, T.C.M.; Pastore, F.J. 2007. Resistance to artificial weathering of five tropical woods and of two finish products. Ciencia Florestal 17(1): 17-23. http://www.bioline.org.br/abstract?cf07003
Sivrikaya, H.; Hafizoglu, H.; Yasav, A.; Aydemir, D. 2011. Natural weathering of oak (Quercus petrae) and chestnut (Castanea sativa) coated with various finishes. Color Res Appl 36(1): 72–78. https://doi.org/10.1002/col.20581
Sönmez, A.; Budakçı, M.; Demirci, Z.; Akkuş, M. 2011. Effects of thermal aging on the film hardness of some wood varnishes. BioResources 6(4): 4594-4605. https://bioresources.cnr.ncsu.edu/BioRes_06/BioRes_06_Unsecured
/BioRes_06_4_4594_Sonmez_BDA_Thermal_Aging_Film_Hardness_Varnish_1997.pdf
Temiz, A.; Terziev, N.; Jacobsen, B.; Eikenes, M. 2006. Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood. J Appl Polym Sci 102(5): 4506-4513. https://doi.org/10.1002/app.24878
Temiz, A.; Yildiz, U.C.; Aydin, I.; Eikenes, M.; Alfredsen, G.; Çolakoglu, G. 2005. Surface roughness and color characteristics of wood treated with preservatives after accelerated weathering test. Appl surf sci 250(1-4): 35-42. https://doi.org/10.1016/j.apsusc.2004.12.019
Tolvaj, L.; Molnar, Z.; Nemeth, R. 2013. Photodegradation of wood at elevated temperature: Infrared spectroscopic study. J Photochem Photobiol B: Biol 121: 32-36. https://doi.org/10.1016/j.jphotobiol.2013.02.007
Van den Bulcke, J.; Van Acker, J.; Stevens, M. 2008. Experimental and theoretical behavior of exterior wood coatings subjected to artificial weathering. J Coat Technol Res 5: 221-231. https://doi.org/10.1007/s11998-007-9074-4
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.