The effects of bioincising by Physisporinus vitreus on cuo retention and copper element leaching in oriental spruce wood

Authors

  • Davut Bakir
  • Saip Nami Kartal
  • Evren Terzi
  • Ayşe Dilek Dogu

DOI:

https://doi.org/10.4067/s0718-221x2022000100427

Keywords:

Bioincising, copper-based preservative, Picea orientalis, refractory wood species, treatability

Abstract

Since the treatability of Oriental spruce wood (Picea orientalis) with preservative solutions is difficult and considered as a refractory wood species, this study was intended to bring its treatability class by a bioincising process to the level of sapwood of Scots pine (Pinus sylvestris), a desirable wood species for the forest products industry. Bioincising process by Physisporinus vitreus fungus was applied to wood samples from sapwood and heartwood portions of spruce wood. The samples with two different weight loss groups (5–10 % and 10–15 %) in the bioincising process were used to detect changes in treatability with wood preservative solutions caused by the fungus. The bioincised and unincised control samples were treated with either micronized copper quat (MCQ) or alkaline copper quat type D (ACQ-D) wood preservative solutions by either dipping or vacuum methods. Following impregnation with the preservative solutions, the effects of the bioincising process on CuO (copper oxide) retention, and the leaching of Cu (copper) element were determined. The results showed that CuO retention levels increased after the bioincising process. Moreover, there was greater CuO retention in the spruce heartwood samples compared to the spruce and Scots pine sapwood samples. Amount of Cu element released from the Scots pine sapwood samples was found to be lower than that from the spruce sapwood and heartwood samples after the bioincising. process. The results suggest that the bioincising process by P. vitreus in refractory wood species might improve the treatability of wood by Cu-based wood preservatives.

Downloads

Download data is not yet available.

References

American Wood Protection Association. AWPA. 2016. AWPA E 11-16: Standard Method for Accelerated Evaluation of Preservative Leaching. AWPA. Birmingham, Alabama, USA. https://awpa.com/

American Wood Protection Association. AWPA. 2016. AWPA A21-16: Standard Method for the Analysis of Wood and Wood Treating Solutions by Inductively Coupled Plasma Emission Spectrometry. AWPA. Birmingham, Alabama, USA. https://awpa.com/

Bakır, D.; Dogu, D.; Kartal, S.N. 2021. Anatomical structure and degradation characteristics of bioincised oriental spruce wood by Physisporinus vitreus. Wood Mater Sci and Eng https://doi.org/10.1080/17480272.2021.1964594

British-Adopted European Standard. BS EN. 2016. BS EN 350-2: Durability of wood and wood-based products. Testing and classification of the durability to biological agents of wood and wood-based materials. BS EN. Ann Arbor, MI, USA. https://www.en-standard.eu/store/?gclid=EAIaIQobChMI4faPv-717QIVmNV3Ch0YPQIAEAAYASAAEgJlfPD_BwE

British-Adopted European Standard. BS EN. 2020. BS EN 113-1: Durability of wood and wood-based products. Test method against wood destroying basidiomycetes. BS EN. Ann Arbor, MI, USA. https://www.en-standard.eu/store/?gclid=EAIaIQobChMI4faPv-717QIVmNV3Ch0YPQIAEAAYASAAEgJlfPD_BwE

Chang, L.; Rong, B.; Xu, G.; Meng, Q.; Wang, L. 2020. Mechanical properties, components and decay resistance of Populus davidiana bioincised by Coriolus versicolor. J For Res 31(5): 2023-2029. http://doi.org/10.1007/s11676-019-00972-3

Dale, A.; Morris, P.I.; Uzunovic, A.; Symons, P.; Stirling, R. 2019. Biological incising of lodgepole pine and white spruce lumber with Dichomitus squalens. Eur J Wood Prod 77(6): 1161–1176. https://doi.org/10.1007/s00107-019-01471-2

Danihelová, A.; Reinprecht, L.; Spišiak, D.; Hrčka, R. 2018. Impact of the Norway spruce sapwood treatment with the staining fungus Sydowia polyspora on its permeability and dynamic modulus of elasticity. Acta Fac Xylologiae Zvolen 60(1): 13-18. https://df.tuzvo.sk/sites/default/files/02-01-18.pdf

Durmaz, S.; Yıldız, U.C.; Yıldız, S. 2015. Alkaline enzyme treatment of spruce wood to increase permeability. BioResources 10(3): 4403-4410. https://ojs.cnr.ncsu.edu/index.php/ BioRes/article/view/7104

Ek, M.; Gellerstedt, G.; Henriksson, G. 2009. Wood chemistry and pulp technology fibre and polymer technology. KTH - Royal Institute of Technology, Stockholm, Sweden.

Emaminasab, M.; Tarmian, A.; Pourtahmasi, K.; Avramidis, S. 2016. Improving the permeability of Douglas-fir (Pseudotsuga menziesii) containing compression wood by Physisporinus vitreus and Xylaria longipes. Int Wood Prod J 7(3): 110-115. https://doi.org/10.1080/20426445.2016.1155788

Fuhr, M.J.; Stührk, C.; Münch, B.; Schwarze, F.W.M.R.; Schubert, M. 2012a. Automated quantification of the impact of the wood decay fungus Physisporinus vitreus on the cell wall structure of Norway spruce by tomographic microscopy. Wood Sci Technol 46(4): 769-779. https://link.springer.com/article/10.1007/s00226-011-0442-y

Fuhr, M.J.; Stührk, C.; Schubert, M.; Schwarze, F.W.M.R.; Herrmann, H.J. 2012b. Modelling the effect of environmental factors on the hyphal growth of the basidiomycete Physisporinus vitreus. J Basic Microbiol 52(5): 523-530. https://doi.org/10.1002/jobm.201100425

Fuhr, M.J.; Schubert, M.; Stührk, C.; Schwarze, F.W.M.R.; Herrmann, H.J. 2013. Penetration capacity of the wood-decay fungus Physisporinus vitreus. A Springer open journal, Complex Adapt Syst Model 1:6. http://www.casmodeling.com/content/1/1/6

Gilani, M.S.; Schwarze, F.W.M.R. 2014. Hygric properties of Norway spruce and sycamore after incubation with two white rot fungi. Holzforschung 69(1): 77-86. https://doi.org/10.1515/hf-2013-0247

Gilani, M.S.; Boone, M.N.; Mader, K.; Schwarze, F.W.M.R. 2014. Synchrotron X-ray micro-tomography imaging and analysis of wood degraded by Physisporinus vitreus and Xylaria longipes. J Str Biol 187(2): 149-157. http://doi.org/10.1016/j.jsb.2014.06.003

Hansmann, C.; Gindl, W.; Wimmer, R.; Teischinger, A. 2002. Permeability of wood- A review. Wood Res–Drevársky Výskum 47(4): 1-16.

Humar, M.; Kariž, M.; Thaler, N.; Lesar, B. 2012. Bioincising of Norway spruce wood using wood inhabiting fungi. Int Biodeterior Biodegrad 68(1): 51-55. https://doi.org/10.1016/j.ibiod.2011.11.014

JMP Statistical Software. 2020. JMP 1989-2007: Version 5.0, SAS Institute Inc., Cary, NC, USA. https://www.capterra.com/p/151815/JMP-Statistical-Software/

Kartal, S.N. 2001. Effect of blue-staining on the release of Copper, Chromium, and Arsenic from CCA-C treated wood (Pinus resinosa Ait.). J For Fac Istanbul Univ 51: 37-47. https://forestist.org/en/archive-171

Kartal, S.N.; Lebow, S. 2002. Effects of incising on treatability and leachability of CCA-C-treated eastern hemlock. For Prod J 52(2): 44-48. https://www.fs.usda.gov/treesearch/pubs/5805

Kobayashi, Y.; Iida, I.; Imamura, Y.; Watanabe, U. 1998. Improvement of penetrability of sugi wood by impregnation of bacteria using sap – flow method. J Wood Sci 44(6): 482-485. https://jwoodscience.springeropen.com/articles/10.1007/BF00833414

Kumar, S.; Morrell, J.J. 1989. Moisture content of western hemlock: influence on treatability with chromated copper arsenate Type C. Holzforschung 43(4): 279-280. https://doi.org/10.1515/hfsg.1989.43.4.279

Lebow, S.T. 1996. Leaching of wood preservative components and their mobility in the environment: summary of pertinent literature. General Technical Report, FPL-GTR-93, USDA Forest Service, Forest Products Laboratory. Madison, WI, USA. https://doi.org/10.2737/FPL-GTR-93

Lehringer, C.; Arnold, M.; Richter, K.; Schubert, M.; Schwarze, F.W.M.R.; Militz, H. 2009. Bioincised wood as substrate for surface modifications. In The Fourth European Conference on Wood Modification. SP Technical Research Institute of Sweden. pp 197-200.

Lehringer, C.; Hillebrand, K.; Richter, K.; Arnold, M.; Schwarze, F.W.M.R.; Militz, H. 2010. Anatomy of bioincised Norway spruce wood. Int Biodeterior Biodegrad 64(5): 346-355. https://doi.org/10.1016/j.ibiod.2010.03.005

Lehringer, C.; Koch, G.; Adusumalli, R-B.; Mook, W.M.; Richter, K.; Militz, H. 2011. Effect of Physisporinus vitreus on wood properties of Norway spruce. Part 1: Aspects of delignification and surface hardness. Holzforschung 65(5): 711-719. https://doi.org/10.1515 /hf.2011.021

Matsumura, J.; Tsutsumi, J.; Oda, K. 1996. Effect of water storage and methanol extraction on longitudinal gas permeability of karamatsu heartwood. Mokuzai Gakkaishi 42(2): 115-121.https://www.jwrs.org/english/journals/mkz-toce/mkze-42/#02

Messaoudi, D.; Ruel, K.; Joseleau, J-P. 2020. Uptake of insecticides and fungicides by impregnable and refractory coniferous wood species treated with commercial bio-based emulsion gel formulations. Maderas-Cienc Tecnol 22(4): 505-516. https://doi.org/10.4067 /S0718-221X2020005000409

Messner, K.; Bruce, A.; Bongers, H.P.M. 2003. Treatability of refractory wood species after fungal pre-treatment. In The First European Conference on Wood Modification. Ghent, Belgium. pp 389-401.

Morris, P.I. 1995. Pasific silver fir is the more treatable component of hem-fir from coastal British Columbia. Forest Prod J 45(9): 37-40. https://agris.fao.org/agris-search/search. do?recordID=US9611318

Panigrahi, S.; Kumar, S.; Panda, S.; Borkataki, S. 2018. Effect of permeability on primary processing of wood. J Pharmacogn Phytochem 7(4): 2593-2598. https://www.phytojournal.com/archives/2018/vol7issue4/PartAR/7-4-91-588.pdf

Perrin, P.W. 1978. Review of incising and its effects on strength and preservative treatment of wood. For Prod J 28(9): 27-33. https://agris.fao.org/agris-search/search.do?recordID=US 7896676

Petrič, M.; Murphy, R.J.; Morris, I. 2000. Microdistribution of some copper and zinc containing waterborne and organic solvent wood preservatives in spruce wood cell walls. Holzforschung 54(1): 23-26. http://doi.org/10.1515/HF.2000.004

Ruddick, J.N.R. 1991. Laser incising of Canadian softwood to improve treatability. Forest Prod J 41(4): 53-57. https://agris.fao.org/agris-search/search.do?recordID=US9171489

Schubert, M.; Dengler, V.; Mourad, S.; Schwarze, F.W.M.R. 2009. Determination of optimal growth parameters for the bioincising fungus Physisporinus vitreus by means of response surface methodology. J Appl Microbiol 106(5): 1734-1742. https://doi.org/10.1111/j.1365-2672.2008.04138.x

Schubert, M.; Volkmer, T.; Lehringer, C.; Schwarze, F.W.M.R. 2011. Resistance of bioincised wood treated with wood preservatives to blue-stain and wood-decay fungi. Int Biodeterior Biodegrad 65(1): 108-115. https://doi.org/10.1016/j.ibiod.2010.10.003

Schubert, M.; Schwarze, F.W.M.R. 2011. Evaluation of the interspecific competitive ability of the bioincising fungus Physisporinus vitreus. J Basic Microbiol 51(1): 80-88. https://doi.org/10.1002/jobm.201000176

Schubert, M.; Stührk, C.; Fuhr, M.J.; Schwarze, F.W.M.R. 2013. Agrobacterium-mediated transformation of the white-rot fungus Physisporinus vitreus. J Microbiol Methods 95(2): 251-252. https://doi.org/10.1016/j.mimet.2013.09.001

Schubert, M.; Stührk, C.; Fuhr, M.J.; Schwarze, F.W.M.R. 2014. Imaging hyphal growth of Physisporinus vitreus in Norway spruce wood by means of confocal laser scanning microscopy (CLSM). Holzforschung 68(6): 727-730. https://doi.org/10.3929/ethz-b-000089928

Schwarze, F.W.M.R.; Landmesser, H.; Zgraggen, B.; Heeb, M. 2006. Permeability changes in heartwood of Picea abies and Abies alba induced by incubation with Physisporinus vitreus. Holzforschung 60(4): 450-454. https://doi.org/10.1515/HF.2006.071

Schwarze, F.W.M.R. 2007. Wood decay under the microscope. Fungal biol rev 21(4): 133-170. https://doi.org/10.1016/j.fbr.2007.09.001

Schwarze, F.W.M.R.; Schubert, M. 2011. Physisporinus vitreus: a versatile white rot fungus for engineering value-added wood products. Appl Microbiol Biotechnol 92(3): 431-440. https://doi.org/10.1007/s00253-011-3539-1

Stirling, R.; Drummond, J.; Zhang, J.; Ziobro, R.J. 2008. Micro-distribution of micronized copper in Southern pine. In Proceedings IRG 39th Annual Meeting, IRG/WP 08-30479, The International Research Group on Wood Protection. Istanbul, Turkey. pp 1-16. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.502. 8224&rep=rep1&type=pdf

Tripathi, S.; Poonia, P.K. 2015. Treatability of Melia composita using vacuum pressure impregnation. Maderas-Cienc Tecnol 17(2): 373-384. http://doi.org/10.4067/S0718-221X 2015005000035

Volkmer, T.; Landmesser, H.; Genoud, A.; Schwarze, F.W.M.R. 2010. Penetration of 3-iodo-2-propynyl butylcarbamate (IPBC) in coniferous wood pre-treated with Physisporinus vitreus. J Coat Technol Res 7(6): 721-726. https://doi.org/10.1007/s11998-010-9259-0

Wang, J.Z.; DeGroot, R. 1996. Treatability and durability of heartwood. National Conference on Wood Transportation Structures. Madison, WI, USA. pp 252-260. https://www.fpl.fs.fed.us/documnts/pdf1996/wang96b.pdf

Wang, L.; Kamdem, P. 2012. Copper leached from micronized copper quaternary (MCQ) treated wood: Influence of the amount of copper in the formulations. In Proceedings of the 55th international convention of society of wood science and technology. Beijing, China. pp 1-9. https://www.swst.org/wp/meetings/AM12/pdfs/papers/PS-66.pdf

Watanabe, U.; Imamura, Y.; Iida, I. 1998. Liquid penetration of precompressed wood VI: Anatomical characterization of pit fractures. J Wood Sci 44(2): 158-162. https://link.springer.com/article/10.1007/BF00526263

Winandy, J.E.; Morrell, J.J.; S.T. Lebow. 1995. Review of the effects of incising on treatability and strength. In: Proceedings of Wood Preservation in the 90's and Beyond, Forest Products Society Publication 7308. Savannah, GA, USA. pp 65- 69. https://forestprod.org

Yıldız, S.; Çanakçı, S.; Yıldız, Ü.C.; Özgenç, Ö.; Tomak, E. 2012. Improving of the impregnability of refractory spruce wood by Bacillus licheniformis pretreatment. BioResources 7(1): 565-577. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2016/06/BioRes_07_1_ 0565_Yildiz_CYOT_Refractory_Spruce_Impreg_Bacillus_Pretreat_2287.pdf

Downloads

Published

2022-02-15

How to Cite

Bakir, D. ., Nami Kartal, S. ., Terzi, E. ., & Dilek Dogu, A. . (2022). The effects of bioincising by Physisporinus vitreus on cuo retention and copper element leaching in oriental spruce wood . Maderas-Cienc Tecnol, 24, 1–14. https://doi.org/10.4067/s0718-221x2022000100427

Issue

Section

Article