Evaluation of mycelium composite materials produced by five patagonian fungal species

Authors

  • Mariano Aquino
  • Maximiliano Rugolo
  • Gerardo Robledo
  • Francisco Kuhar

DOI:

https://doi.org/10.4067/s0718-221x2022000100435

Keywords:

Fungal agglomerates, hyphal system, Patagonia strains, sawdust substrate, Ganoderma australe

Abstract

Mycelium composites consist of particulate lignocellulosic materials, e.g., sawdust from the timber industry structured as a solid matrix resulting from the mycelial growth. Many protocols have been proposed based on different strains and substrates. However, the influence of intrinsic elements, such as the structure of the hyphal system on the main parameters required by the industry still needs to be researched. The main goal of this work is to assess the performance of five Patagonian lignocellulolytic fungal species for producing mycelium composites. Strains of these species were studied in order to assess the relation between basidiome hyphal structure and the hyphal structure of mycelium-based materials. Comparisons of the hardness in the Janka scale were performed with commercial expanded polystyrene. Composites resulting from the growth of Pleurotus ostreatus, Nothophellinus andinopatagonicus and Funalia trogii successfully formed composites, showing alower quality than Ganoderma australe. Ryvardenia cretacea in turn completely failed to colonize the substrate. The material resulting from the growth of Ganoderma australe on pine sawdust (a substrate chosen based on its local availability) is proposed as a good substitute with improved resistance.

Downloads

Download data is not yet available.

References

Appels, F.V.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.; Dijksterhuis, J.; Wösten, H.A. 2019. Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Mater Des 161: 64-71. https://doi.org/10.1016/j.matdes.2018.11.027

Bayer, E.; McIntyre, G.; Swersey, B.L. 2008. Method for producing grown materials and products made thereby. U.S. Patent Application US 2008/0145577 A1.

Bruscato, C.; Malvessi, E.; Brandalise, R.N.; Camassola, M. 2019. High performance of macrofungi in the production of mycelium-based biofoams using sawdust—Sustainable technology for waste reduction. J Clean Prod 234: 225-232. https://doi.org/10.1016/j.jclepro.2019.06.150

Camere, S.; Karana, E. 2018. Fabricating materials from living organisms: An emerging design practice. J Clean Prod 186: 570-584. https://doi.org/10.1016/j.jclepro.2018.03.081

Decock, C.; Amalfi, M.; Robledo, G.L.; Castillo, G. 2013. Phylloporia ouraguensis, an undescribed species on Myrtaceae from French Guiana. Cryptogam Mycol 34: 15-27. https://doi.org/10.7872/crym.v34.iss1.2013.15

DNDFI. 2018. Informe de relevamiento censal de la provincia del Chubut, Marzo 2018. Dirección Nacional de Desarrollo Forestal Industrial, Secretaría de Agricultura Ganadería y Pesca. Censo Nacional de Aserraderos, Argentina.

Elsacker, E.; Vandelook, S.; Brancart, J.; Peeters, E.; De Laet, L. 2019. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PloS One 14(7): e0213954. https://doi.org/10.1371/journal.pone.0213954

Elsacker, E.; Vandelook, S.; Van Wylick, A. 2020. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci Total Environ https://doi.org/10.1016/j.scitotenv.2020.138431

Elsacker, E.; Søndergaard, A.; Van Wylick, A.; Peeters, E.; De Laet, L. 2021. Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Constr Build Mater 283: 122732. https://doi.org/10.1016/j.conbuildmat.2021.122732

Girometta, C.; Picco, A.M.; Baiguera, R.M.; Dondi, D.; Babbini, S.; Cartabia, M.; Pellegrini, M.; Savino, E. 2018. Physical-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability 11(1): 1-22. https://doi.org/10.3390/su11010281

Glenn, J.K.; Gold, M.H. 1985. Purification and characterisation of an extracellular Mn(II)-dependent peroxidase from the lignin degrading basidiomycete Phanerochaete chrysosporium. Arch Biochem Biophys 242: 329-341. https://doi.org/10.1016/0003-9861(85)90217-6

Gomez-Montoya, N.; Dreschler-Santos, E.R.; Ferreira-Lopes, V.; Tomsovsky, M.; Urcelay, C.; Robledo, G. 2017. New insights on Trametopsis tomšovský (Polyporales Gäum) based on phylogenetic evidence and morphological analyses of neotropical species. Phytotaxa 311(2): 155-167. http://hdl.handle.net/11336/37394

Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. 2018. Mechanical behavior of mycelium-based particulate composites. J Mater Sci 53(24): 16371-16382. https://doi.org/10.1007/s10853-018-2797-z

Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. 2017. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci Rep 7: 41292. https://doi.org/10.1038/srep41292

Holt, G.A.; Mcintyre, G.; Flagg, D.; Bayer, E.; Wanjura, J.D.; Pelletier, M.G. 2012. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. J Biobased Mater Bioenergy 6(4): 431-439. https://doi.org/10.1166/jbmb.2012.1241

Ibañez, C.G. 1995. Contribución al estudio de hongos xilófagos en la provincia de Misiones, Argentina. (Basidiomycetes, Aphyllophorales) I. Ganodermataceae e Hymenochaetaceae. Bol Soc Argent Bot 30(3-4): 213-230.

Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. 2017. Morphology and mechanics of fungal mycelium. Sci Rep 7(1): 13070. https://doi.org/10.1038/s41598-017-13295-2

Jones, M.; Huynh, T.; Dekiwadia, C.; Daver, F.; John, S. 2017. Mycelium composites: A review of engineering characteristics and growth kinetics. J Bionanosci 11(4): 241-257. https://doi.org/10.1166/jbns.2017.1440

Jones, M.; Bhat, T.; Wang, C.H.; Moinuddin, K.; John, S. 2017b. Thermal degradation and fire reaction properties of mycelium composites. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China (pp. 20-25).

Jones, M.; Huynh, T.; John, S. 2018. Inherent species characteristic influence and growth performance assessment for mycelium composite applications. Advanced Mater Lett 9(1): 71-80. https://aml.iaamonline.org/article_15116_d4d4ba530ebff9f5b3fdabe8c9a7c6df.pdf

Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. 2020. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater Des 187: 108397. https://doi.org/10.1016/j.matdes.2019.108397

Koutinas, A.A.; Wang, R.; Webb, C. 2004. Restructuring Upstream Bioprocessing: Technological and Economical Aspects for Production of a Generic Microbial Feedstock From Wheat. Biotechnol Bioeng 1-15. https://doi.org/10.1002/bit.10888

Kuhar, F.; Castiglia, V.; Levin, L. 2015. Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation. Inter Biodeterior Biodegradation 104: 238-243. https://doi.org/10.1016/j.ibiod.2015.06.017

Lechner, B.E.; Petersen, R.; Rajchenberg, M.; Albertó, E. 2002. Presence of Pleurotus ostreatus in Patagonia, Argentina. Rev Iberoamericana Micologia 19(2): 111-114.

Lelivelt, R.J.J.; Lindner, G.; Teuffel, P.M.; Lamers, H.; SD, U.S.D. 2015. The mechanical possibilities of mycelium materials. Eindhoven University of Technology, Eindhoven, Netherlands.

Levin, L. 1998. Biodegradación de materiales lignocelulósicos por Trametes trogii (Aphyllophorales, Basidiomycetes). Tesis Doctoral. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires: Buenos Aires.

Loguercio, G.A.; Jovanovsky A.; Molina J.C.; Pantaenius P. 2008. Residuos de biomasa de forestaciones y aserraderos de la región Andina de las Provincias de Chubut y Neuquén. Evaluación preliminar de oferta. Publicación Técnica. CIEFAP - No. 34. CIEFAP – JICA, Esquel, Argentina.

Martínez, A.T.; Speranza, M.; Ruiz-Dueñas, F.J.; Ferreira, P.; Camarero, S.; Guillén, F.; Gutiérrez, A. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. InterMicrobiol 8(3): 195-204. https://scielo.isciii.es/pdf/im/v8n3/07%20Martinez.pdf

Meng, L.; Li, W.; Zhang, S.; Wu, C.; Lv, L. 2017. Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw. Bioresource Technol 226: 39-45. https://doi.org/10.1016/j.biortech.2016.11.054

Menolli-Junior, N.; Asai, T.; Capelari, M.; Paccola-Meirelles, L.D. 2010. Morphological and molecular identification of four brazilian commercial isolates of Pleurotus spp. and cultivation on corncob. Braz Arch Biol Technol 53(2): 397-408. https://www.scielo.br/j/babt/a/nLMmXCzQVYxCPS3HD5pWs6H/?format=pdf&lang=en

Murace, M.; Spavento, E.; Keil, G.; Saparrat, M. 2010. Pudrición castaña: efectos sobre las propiedades de resistencia mecánica de la madera. Quebracho-Rev Ciencias For 18(1-2): 37-46. https://www.redalyc.org/pdf/481/48118695004.pdf

Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153(2): 375-380.

Nobles, M.K. 1965. Identification of cultures of wood-inhabiting Hymenomycetes. Canadian J Bot 43: 1097-1139.

Pelletier, M.G.; Holt, G.A.; Wanjura, J.D.; Bayer, E.; McIntyre, G. 2013. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind Crop Prod 51: 480-485. https://doi.org/10.1016/j.indcrop.2013.09.008

Pegler, D.N. 1996. Hyphal analysis of basidiomes. Mycol Res 100(2): 129-142.

Petre, C.V.; Tănase, C. 2013. Description of the culture characteristics of some lignicolous basidiomycetes species grown on three synthetic media. J Plant Develop 20: 105-114. https://azkurs.org/pars_docs/refs/27/26641/26641.pdf#page=106

Rajchenberg, M. 1996. Los hongos pudridores de Nothofagus pumilio (lenga): identificación de los cultivos puros. Bosque 17: 87-100.

Rajchenberg, M. 2006. Los políporos (Basidiomycetes) de los bosques Andino Patagónicos de Argentina. Bibliotheca Mycologica 201. https://www.schweizerbart.de/publications/detail/isbn/3443591035

Rajchenberg, M.; Greslebin, A. 1995. Cultural characters, compatibility tests and taxonomic remarks of selected polypores of the Patagonian Andes forests of Argentina. Mycotaxon 56: 325-346.

Sánchez, C. 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2): 185-194. https://doi.org/10.1016/j.biotechadv.2008.11.001

Schmidt, O. 2006. Wood and tree fungi. Biology, damage, protection, and use. Springer, Berlin, Heidelberg, New York, 334 pp

Somogyi, M. 1952. Notes on sugar determination. J Biol Chem 195: 19-23.

Stamets, P.; Chilton, J.S. 1983. The mushroom cultivator: a practical guide to growing mushrooms at home. Agarikon Press, Olympia Washington, Pages: 415.

Sutherland, G.R.; Zapanta, L.S.; Tien, M.; Aust, S.D. 1997. Role of calcium in maintaining the heme environment of manganese peroxidase. Biochemistry 36(12): 3654-3662. https://doi.org/10.1021/bi962195m

Vallas, T.; Courard, L. 2017. Using nature in architecture: Building a living house with mycelium and trees. Front Archit Res 6(3): 318-328. https://doi.org/10.1016/j.foar.2017.05.003

Wood, T.M.; Bhat, K.M. 1988. Methods for measuring cellulase activities. Methods Enzymol 160: 87-112.

Wright, J.E.; Deschamps, J.R. 1972. Basidiomicetos xilófilos de los bosques andinopatagónicos. Rev Inv Agrop INTA, Serie 5, Pat Veg 9(3): 111-196.

Xing, Y.; Brewer, M.; El-Gharabawy, H.; Griffith, G.; Jones, P. 2018. Growing and testing mycelium bricks as building insulation materials. In IOP Conference Series: Earth and Environmental Science 121(2).

Zervakis, G.; Philippoussis, A.; Ioannidou, S.; Diamantopoulou, P. 2001. Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol 46(3): 231. https://doi.org/10.1007/BF02818539

Downloads

Published

2022-05-11

How to Cite

Aquino, M. ., Rugolo, M. ., Robledo, G. ., & Kuhar, F. (2022). Evaluation of mycelium composite materials produced by five patagonian fungal species. Maderas-Cienc Tecnol, 24, 1–14. https://doi.org/10.4067/s0718-221x2022000100435

Issue

Section

Article