Antifungal and larvicidal effects of wood vinegar on wood-destroying fungi and insects

Authors

  • Memiş Akkuş
  • Çağlar Akçay
  • Mesut Yalçın

Keywords:

Antifungal, pesticide, pyroligneous acids, wood preservation, wood vinegar

Abstract

Wood vinegar is a natural organic pesticide that is effective against plant diseases and harmful insects and is used in agriculture in particular for the improvement of plant and soil quality. In different application areas, wood vinegar provides effective protection against various harmful bacteria, fungi, and insects. Based on its demonstrated protection as a pesticide and antifungal, this study aimed to use wood vinegar as an impregnation agent in wood materials. For this purpose, using the full-cell process, Scots pine (Pinus sylvestris) and Eastern beech (Fagus orientalis) samples were impregnated with concentrations of 1 %, 5 %, 3 % and 6 % oak wood vinegar, obtained via the pyrolysis of sessile oak (Quercus petraea L.) wood at 350 °C. The samples were then subjected to tests for brown-rot (Serpula lacrymans) and white-rot (Trametes versicolor) fungi according to EN 113 (1996) standard, for Hylotrupes bajulus (Coleoptera: Cerambycidae) larvae according to EN 47 standard, and for three different mold fungi (Aspergillus niger Tiegh JAG-04-1003, Penicillium brevicompactum Dierckx FS-31, and Trichoderma harzianum Rifai FS-19). According to the results, the wood vinegar was found to exhibit antifungal, antimold, and larvicidal properties and consequently, could be used effectively in wood protection.    

Downloads

Download data is not yet available.

References

Adfa, M.; Kusnanda, A.J.; Saputra, W.D.; Banon, C.; Efdi, M.; Koketsu, M. 2017. Termiticidal activity of Toona sinensis wood vinegar against Coptotermes curvignathus Holmgren. Rasayan J Chem 10(4): 1088–1093. http://dx.doi.org/10.7324/RJC.2017.1041866

Adfa, M.; Romayasa, A.; Kusnanda, A.J.; Avidlyandi, A.; Yudha S,S.; Banon, C.; Gustian, I. 2020. Chemical components, antitermite and antifungal activities of cinnamomum parthenoxylon wood vinegar. J Korean Wood Sci Technol 48(1): 107–116. https://doi.org/10.5658/WOOD.2020.48.1.107

Akinyele, F.F.; Egbuche, C.T.; Umeojiakor, A.O.; Ulocha, O.B. 2015. Investigation into the effectiveness of selected bio-based preservatives on control of termite and fungi of wood in service. Agriculture, Forestry and fisheries 4(3–1): 59–63. https://doi.org/10.11648/j.aff.s.2015040301.20

American Society for Testing and Materials. 2019. ASTM D4445-10: Standard Test Method for Fungicides for Controlling Sapstain and Mold on Unseasoned Lumber (Laboratory Method). ASTM. West Conshohocken, PA, USA. https://www.astm.org/Standards/D4445.htm

Faisal, M.; Utari, S.; Hayvia, Z.; Maulana, I. 2019. A preliminary study of the utilization of Cu (II) modified liquid smoke to inhibit the activity of white-rot fungi (Schizophyllum commune Fr) in a pinewood in-vitro. Int J Geomate 17(61): 56–61. https://doi.org/10.21660/2019.61.4679

Firouzbehi, F.; Efhamisisi, D.; Hamzeh, Y.; Tarmian, A.; Oladi, R. 2021. Pyrolysis acid as sustainable wood preservative against rot fungi. Biofuel Bioprod Biorefin 15(1): 74–84. https://doi.org/10.1002/bbb.2149

Kartal, S.N.; Imamura, Y.; Tsuchiya, F.; Ohsato, K. 2004a. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production. Bioresour Technol 95(1): 41–47. https://doi.org/10.1016/j.biortech.2004.02.005

Lee, S.; H., H’ng, P.S.; Lee, A.N.; Sajap, A.S.; Tey, B.T.; Salmiah, U. 2010. Production of pyroligneous acid from lignocellulosic biomass and their effectiveness against biological attacks. J Appl Sci 10(20): 2440–2446. https://www.cabdirect.org/cabdirect/abstract/20103292930

Mathew, S.; Zakaria, Z.A. 2015. Pyroligneous acid—the smoky acidic liquid from plant biomass. Appl Microbiol Biotechnol 99(2): 611–622. https://doi.org/10.1007/s00253-014-6242-1.

Nakai, T.; Kartal, S.N.; Hata, T.; Imamura, Y. 2007. Chemical characterization of pyrolysis liquids of wood-based composites and evaluation of their bio-efficiency. Build Environ 42(3): 1236–1241. https://doi.org/10.1016/j.buildenv.2005.11.022.

Oramahi, H.A.; Diba, F. 2013. Maximizing the production of liquid smoke from bark of durio by studying its potential compounds. Procedia Environ Sci 17: 60–69. https://doi.org/10.1016/j.proenv.2013.02.012.

Oramahi, H.A.; Yoshimura, T. 2013. Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl. J Wood Sci 59(4): 344–350. https://doi.org/10.1007/s10086-013-1340-8

Oramahi, H.A.; Yoshimura, T.; Diba, F.; Setyawati, D. 2018. Antifungal and antitermitic activities of wood vinegar from oil palm trunk. J Wood Sci 64(3): 311–317. https://doi.org/10.1007/s10086-018-1703-2

Oramahi, H.; Yoshimura, T.; Rusmiyanto, E.; Kustiati, K. 2020. Antifungal and antitermitic activities of vinegars from two biomass resources at different pyrolytic temperatures. J Appl Biol Sci 14(1): 26–38. http://www.jabsonline.org/index.php/jabs/article/view/705

Salim, S.; Shahomlail, S.; Choi, Y.S.; Kim, M.J.; Kim, G.H. 2014. Laboratory evaluation of the anti-stain efficacy of crude wood vinegar for Pinus densiflora. BioResources 9(1): 704-709. https://doi.org/10.15376/biores.9.1.704-709

Salim, S.; Yi, L.Y.; Ashaari, Z.; Choi, Y.S.; Kim, G.H. 2021. Crude wood vinegar as a potential anti-mould chemical for sesendok and jelutong. In: International Conference on The Future Wood Science and Technology Education 2021 (FWSTE2021). https://forenv.upm.edu.my/upload/dokumen/20210524204319A16.pdf

Shen, Z.; Fang, Q.; Bao, B.; Zhang, Q.; Ye, L.; Zhang, X. 2010. Antifungal characteristics of raw bamboo vinegar and bamboo vinegar preparations on wood mold. J Zhejiang For College 27(1): 99–104. mhttps://www.cabdirect.org/cabdirect/abstract/20103144209

SPSS. 2020. IBM SPSS Statistical Software version 22. International Business Machines, USA. https://www.ibm.com/support/pages/spss-statistics-220-available-download

Sulaiman, O.; Murphy, R.J.; Hashim, R.; Gritsch, C.S. 2005. The inhibition of microbial growth by bamboo vinegar. J Bamboo Rattan 4(1): 71–80. https://scholar.google.com.tr/scholar?hl=tr&as_sdt=0%2C5&q=The+inhibition+of+microbial+growth+by+bamboo+vinegar&btnG=

Temiz, A.; Alma, M.H.; Terzi, E.; N., Palanti, S.; Feci, E. 2010. Efficiency of bio-oil against wood destroying organisms. J Biobased Mater Bioenergy 4(4): 317–323. https://doi.org/10.1166/jbmb.2010.1092

Theapparat, Y.; Chandumpai, A.; Leelasuphakul, W.; Laemsak, N. 2015. Pyroligneous acids from carbonisation of wood and bamboo: their components and antifungal activity. J Trop For Sci 27(4): 517–526. https://www.jstor.org/stable/43596228

Toledo, R.T. 2007. Wood smoke components and functional properties. International Smoked Seafood Conference Proceedings, Anchorage, Alaska, USA. 55-61. https://eos.ucs.uri.edu/seagrant_Linked_Documents/aku/akuw07001.pdf#page=61

Tomak, E.D.; YILDIZ, Ü. 2012. Applicability of vegetable oils as a wood preservative. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 13(1): 142–157. http://ofd.artvin.edu.tr/tr/pub/issue/2264/29818

Turkish Standard. 1996. TS-EN 113: Wood preservatives - Test method for determining the protective effectiveness against wood destroying basidiomycetes - Determination of the toxic values. TSE: Ankara, Turkey. https://www.en-standard.eu/une-en-113-1996-wood-preservatives-test-method-for-determining-the-protective-effectiveness-against-wood-destroying-asidiomycetes-determination-of-the-toxic-values/

Turkish Standard. 2016. TS-EN 113: Wood preservatives - Determination of the toxic values against larvae of Hylotrupes bajulus (Linnaeus)-(Laboratory method). TSE: Ankara, Turkey. https://intweb.tse.org.tr/Standard/Standard

/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073099053056083117078074097072052066

Velmurugan, N.; Chun, S.S.; Han, S.S.; Lee, Y.S. 2009. Characterization of chikusaku-eki and mokusaku-eki and its inhibitory effect on sapstaining fungal growth in laboratory scale. Int J Environ Sci Technol 6(1): 13–22. https://doi.org/10.1007/BF03326056

Wei, Q.; Ma, X.; Zhao, Z.; Zhang, S.; Liu, S. 2010. Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell. J Anal Appl Pyrol 88(2): 149–154. https://doi.org/10.1016/j.jaap.2010.03.008

Wititsiri, S. 2011. Production of wood vinegars from coconut shells and additional materials for control of termite workers, Odontotermes sp. and striped mealy bugs Ferrisia virgata. Songklanakarin J Sci Technol 33(3): 349-354 https://www.thaiscience.info/journals/Article/SONG/10891343.pdf

Yahayu, M.; Mahmud, K.N.; Mahamad, M.N.; Ngadiran, S.; Lipeh, S.; Ujang, S.; Zakaria, Z.A. 2017. Efficacy of pyroligneous acid from pineapple waste biomass as wood preserving agent. Jurnal Teknologi 79(4): 1-8. https://doi.org/10.11113/jt.v79.9987

Zhai, M.; Shi, G.; Wang, Y.; Mao, G.; Wang, D.; Wang, Z. 2015. Chemical compositions and biological activities of pyroligneous acids from walnut shell. BioResources 10(1): 1715–1729. https://doi.org/10.15376/biores.10.1.1715-1729

Zuraida, I.; Budijanto, S. 2011. Antibacterial activity of coconut shell liquid smoke (CS-LS) and its application on fish ball preservation. Int Food Res J 18(1): 405-410. http://eds.b.ebscohost.com/eds/pdfviewer/pdfviewer?vid=0&sid=5bc1d09e-57d6-48ac-9e07-d8f45633a2cb%40sessionmgr102

Downloads

Published

2022-05-17

How to Cite

Akkuş, M. ., Akçay, Çağlar ., & Yalçın, M. . (2022). Antifungal and larvicidal effects of wood vinegar on wood-destroying fungi and insects. Maderas-Cienc Tecnol, 24. Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/5456

Issue

Section

Article