Carbon footprint of wooden and plastic pallets: A quantification with different software tools

Authors

  • Marcia Vásquez
  • Leonardo Vásquez
  • Ricardo Musule
  • Alfredo Iriarte

Keywords:

Carbon footprint, materials, free software, life cycle assessment, plastic pallets, wooden pallets

Abstract

Transport is one of the activities that generates the highest CO2eq emissions. In the particular case of Chile, it is the second economic activity that generates the greatest environmental impact. The safe and efficient transport of products in domestic and foreign markets is often carried out with the help of pallets made of various materials, such as wood or plastic, which goes hand in hand with different environmental performance in their production. That is why it is important to know the carbon footprint of these products. The objectives of this study are to compare the value of the carbon footprint generated by the local production of wooden and plastic pallets and to evaluate the variations in its quantification using different software. For this purpose, the Chilean market is taken as a reference. This study follows the main guidelines of ISO 14040 and ISO 14067 standards as a reference framework. The functional unit is 1 pallet produced and the system boundary is from cradle to gate. The results show that wood and plastic pallets have an average carbon footprint of 4,12 kg CO2eq and 38,85 kg CO2eq respectively. The difference between the two pallets is mainly due to the environmental load of the raw materials. The causes of the variation in the estimation of the carbon footprint with different software are specifically based on the databases with which they can work. The ratio of 1:9 between the carbon footprint of wooden pallets concerning plastic pallets provides important data for decision making.

Downloads

Download data is not yet available.

References

Anil, S.K.; Ma, J.; Kremer, G.E.; Ray, C.D.; Shahidi, S.M. 2020. Life cycle assessment comparison of wooden and plastic pallets in the grocery industry. J Ind Ecol 24(4): 871–886. https://doi.org/10.1111/jiec.12974

Azapagic, A. 2016. CCaLC2 for Windows Manual. V1.1. Manchester University, Manchester, UK. http://www.ccalc.org.uk/downloads/Manual_CCaLC2.pdf

Beccali, M.; Cellura, M.; Iudicello, M.; Mistretta, M. 2010. Life cycle assessment of Italian citrus based products. Sensitivity analysis and improvement scenarios. J Environ Manage 91(7): 1415–1428. https://doi.org/10.1016/j.jenvman.2010.02.028.

CENEM. 2017. Estadísticas in Packaging: Producción de envases de madera. http://cenem.cl/newsletter/mayo2017/detalle-28.php

Ciroth, A. 2021. OpenLCA. https://www.openlca.org/openlca/.

Ciroth, A. 2007. ICT for environment in life cycle applications openLCA - A new open source of tware for Life Cycle Assessment. Int J Life Cycle Assess 12(4): 209–210. https://doi.org/10.1065/lca2007.06.337

CML. 2016. CML-IA Characterization Factors. https://www.universiteitleiden.nl/en/research/researchoutput/science/cml-ia-characterisation-factors.

Deviatkin, I.; Khan, M.; Ernst, E.; Horttanainen, M. 2019. Wooden and plastic pallets: A review of life cycle assessment (LCA) studies. Sustainability 11(20): 1-17. https://doi.org/10.3390/su11205750.

Elduque, A.; Elduque, D.; Pina, C.; Clavería, I.; Javierre, C. 2018. Electricity consumption estimation of the polymer material injection-molding manufacturing process: Empirical model and application. Materials 11(9): 1-12. https://doi.org/10.3390/ma11091740.

EPA. 2018. Emission Factors for Greenhouse Gas Inventories. Environmental Protection Agency (EPA), Washington, D.C., USA. https://www.epa.gov/sites/production/files/201803/documents/emission-factors_mar_2018_0.pdf

Freedonia. 2021. Global Wood pallet demand to reach 5.8 billion units in 2024. The Freedonia Groups. https://www.prnewswire.com/news-releases/global-wood-pallet-demand-to-reach-5-8-billion-units-in 2024--301066267.html.

Fritsche, U.; Schmidt, K. 2003. Global emission model for integrated systems (GEMIS). GEMIS 4.1 Manual. Öko-Institut, Darmstadt, Germany.

http://iinas.org/tl_files/iinas/downloads/GEMIS/GEMIS_5.zip.

Gajardo, C. 2020. Evaluación del potencial de calentamiento global debido al cambio de materialidad en pallets de exportación. Memoria de pregrado. Universidad de Talca, Facultad de Ciencias Forestales,

Escuela de Ingeniería Forestal. Talca, Chile. (In Spanish) García-Durañona, L.; Farreny, R.; Navarro, P.; Boschmonart-Rives, J. 2016. Life Cycle

Assessment of a coniferous wood supply chain for pallet production in Catalonia, Spain. J Clean Prod137: 178–188. https://doi.org/10.1016/j.jclepro.2016.07.032.

Córdoba Guerrero, L.F. 2018. Optimización y estandarización de flota de grúas horquilla en aplicación industrial. Bachelor's tesis. Universidad Técnica Federico Santa María, Departamento de Ingeniería Mecánica. Valparaíso, Chile. https://repositorio.usm.cl/handle/11673/42205 (In Spanish)

Guinée, J.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; Van Oers, A.; Wegener, S.; et al. 2002. Handbook on Life Cycle Assessment. Kluwer Academic Publishers, Dordrecht, Netherlands.

Han, H.S.; Oneil, E.; Bergman, R.D.; Eastin, I.L.; Johnson, L.R. 2015. Cradle-to-gate life cycle impacts of redwood forest resource harvesting in northern California. J Clean Prod 99: 217–229. http://dx.doi.org/10.1016/j.jclepro.2015.02.088.

Hassanzadeh Amin, S.; Wu, H.; Karaphillis, G. 2018. A perspective on the reverse logistics of plastic pallets in Canada. J Remanufacturing 8(3): 153–174. https://doi.org/10.1007/s13243-018-00510

Hersh, B.; Mirkouei, A. 2019. Life cycle assessment of pyrolysis-derived biochar from organic wastes and advanced feedstocks. In Proceedings of 24th Design for Manufacturing and the Life Cycle Conference. American Society of Mechanical Engineers (ASME). Charlotte, USA. https://doi.org/10.1115/DETC2019-97896

Herrera-Huerta, J.; Muñoz-Alvear, E.; Montalba-Navarro, R. 2012. Evaluation of two production methods of Chilean wheat by life cycle assessment (LCA). Idesia 30(2): 101–110. https://doi.org/10.4067/s0718-34292012000200013.

Ihobe S.A. 2009. Análisis de ciclo de vida y huella de carbono. IHOBE, Bilbao, Spain. http://www.comunidadism.es/wp-content/uploads/downloads/2012/10/PUB-2009-033-f-C001_analisis-ACV-y-huella-de-carbonoV2CAST.pdf.

IPCC. 1996. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventory Programme, IGES, Kanagawa, Japan. https://www.ipcc.ch/report/revised-1996-ipcc-guidelines-for-national-greenhouse-gas-inventories/

IPCC 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventory Programme, IGES, Kanagawa, Japan. https://www.ipccch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/

IPCC 2013. Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.

IPCC 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Methodology Report. Prepared by the National Greenhouse Gas Inventory Programme, IGES, Kanagawa, Japan. https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html

Iriarte, A.; Almeida, M.G.; Villalobos, P. 2014. Carbon footprint of premium quality export bananas: Case study in Ecuador, the world’s largest exporter. Sci Total Environ. 472: 1082–1088. http://dx.doi.org/10.1016/j.scitotenv.2013.11.072.

ISO. 2006. ISO 14040: Environmental Management - Life Cycle Assessment - Principles and Framework (ISO 14040:2006).

ISO. 2018. ISO 14067: Greenhouse Gases. Carbon Footprint of Products. Requirements and Guidelines for Quantification (ISO 14067:2018).

Jungmeier, G.; McDarby, F.; Evald, A.; Hohenthal, C.; Petersen, A.K.; Schwaiger, H.P.; Zimmer B. 2003. Energy aspects in LCA of forest products. Int J Life Cycle Assess 8(2): 99–105. http://link.springer.com/10.1007/BF02978433.

Khan, M.; Deviatkin, I.; Havukainen, J.; Horttanainen, M. 2021. Environmental impacts of wooden, plastic, and wood-polymer composite pallet: a life cycle assessment approach. Int J Life Cycle Assess 26: 1607-1622. https://doi.org/10.1007/s11367-021-01953-7

Kočí, V. 2019. Comparisons of environmental impacts between wood and plastic transport pallets. Sci Total Environ 686: 514–528. https://doi.org/10.1016/j.scitotenv.2019.05.472.

Kumar, A.; Prakash, G.; Kumar, G. 2021. Does environmentally responsible purchase intention matter for consumers? A predictive sustainable model developed through an empirical study. J Retail Consum Serv 58: 102270. https://doi.org/10.1016/j.jretconser.2020.102270.

Lopes-Silva, D.A.; Nunes, A.O.; Piekarski, C.M.; da Silva-Moris, V.A.; de Souza, L.S.M.; Rodrigues, T.O. 2019. Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause-effect analysis of the problem. Sustain Prod

Consum 20: 304–315. https://doi.org/10.1016/j.spc.2019.07.005.

Meyer-Aurich, A.; Lochmann, Y.; Klauss, H.; Prochnow, A. 2016. Comparative advantage of maize- and grass-silage-based feedstock for biogas production concerning greenhouse gas mitigation. Sustainability 8(7): 1–14. https://doi.org/10.3390/su8070617

Ministerio de Energía. Gobierno de Chile. 2020. Informe de Gestión Cuenta pública Participativa. Ministerio de Energía de Chile, Santiago, Chile. (In Spanish) https://cdn.digital.gob.cl/public_files/Campañas/Cuenta-Pública-2020/CP-sectoriales/19-2020

SECTORIAL-MINISTERIO-DE-ENERGIA.pdf.

Montalba, R.; Vieli, L.; Spirito, F.; Muñoz, E. 2019. Environmental and productive performance of different blueberry (Vaccinium corymbosum L.) production regimes: Conventional, organic, and agroecological. Sci Hortic 256: 108592. https://doi.org/10.1016/j.scienta.2019.108592

Neeft, J.; Muisers, J.; Gerlagh, T.; Calderón, C.; Jossart, J.-M.; Ludwiczek, N.; Bacovsky, D.; Thonier, G.; et al. 2015. BioGrace-II Publishable final report. Enterprise Agency (RVO), Netherlands.

Nekmahmud, M.; Fekete-Farkas, M. 2020. Why not green marketing? Determinates of consumers’ intention to green purchase decision in a new developing nation. Sustainability 12(19): 1–31. https://doi.org/10.3390/su12197880

Niero, M.; Di Felice, F.; Ren, J.; Manzardo, A.; Scipioni, A. 2014. How can a life cycle inventory parametric model streamline life cycle assessment in the wooden pallet sector? Int J Life Cycle Assess 19: 901–918. https://doi.org/10.1007/s11367-014-0705-6.

Ormazabal, M.; Jaca, C.; Puga-Leal, R. 2014. Analysis and comparison of life cycle assessment and carbon footprint software. P. 1521–1530. In Proceedings of the Eighth International Conference on Management Science and Engineering Management. Lisbon, Portugal. https://doi.org/10.1007/978-3 642-55122-2_131 Palletwia. 2020. http://www.palletwia.cl/

Pauer, E.; Wohner, B.; Tacker, M. 2020. The influence of database selection on environmental impact results. Life cycle assessment of packaging using gabi, ecoinvent 3.6, and the environmental footprint atabase. Sustainability 12(23): 1–15. https://doi.org/10.3390/su12239948.

Perić, M.; Antonijević, D.; Komatina, M.; Bugarski, B.; Rakin, M. 2020. Life cycle assessment of wood chips supply chain in Serbia. Renew Energ 155: 1302–1311. https://doi.org/10.1016/j.renene.2020.04.026.

Peter, C.; Helming, K.; Nendel, C. 2017. Do greenhouse gas emission calculations from energy crop cultivation reflect actual agricultural management practices? – A review of carbon footprint calculators. Renew Sust Energ Rev 67: 461–476. https://dx.doi.org/10.1016/j.rser.2016.09.059.

Pre-sustainability. 2021. SimaPro. http://pre-sustainability.com/solutions/tools/simapro/.

Puettmann, M.; Sahoo, K.; Wilson, K.; Oneil, E. 2020. Life cycle assessment of biochar produced from forest residues using portable systems. J Clean Prod 250: 119564. https://doi.org/10.1016/j.jclepro.2019.119564.

Qiang, T.; Chou, Y.; Gao, H. 2019. Environmental impacts of styrene-butadiene-styrene toughened wood fiber/polylactide composites: A cradle-to-gate life cycle assessment. Int J Environ Res Public Health 16(18). https://doi.org/10.3390/ijerph16183402.

Ramos-Huarachi, D.A.; Piekarski, C.M.; Puglieri, F.N.; de Francisco, A.C. 2020. Past and future of Social Life Cycle Assessment: Historical evolution and research trends. J Clean Prod 264: 121506. https://doi.org/10.1016/j.jclepro.2020.121506

Serradj, T.; Makhlouf, A.; Ahmed, M.S.A. 2016. Application of life cycle assessment to the case studies of new nitrogen fertilizer production. Int J Glob Warm 10(1–3): 216–229. https://doi.org/10.1504/IJGW.2016.077914.

SimaPro. 2021. SimaPro. https://simapro.com/about/.

Solano-Salmerón, J. 2018. Impacto potencial sobre el cambio climático de las tarimas de madera elaboradas en la Región Huetar Norte de Costa Rica a través de un Análisis de Ciclo de Vida (ACV). Memoria de pregrado. Universidad Nacional de Costa Rica, Facultad de Ciencias de la Tierra y el Mar, Escuela de Ciencias Ambientales. Heredia, Costa Rica. (In Spanish)

Solano -almerón, J.; Fonseca-González, W.; Ugalde-Alfaro, S.; Alice-Guier, F. 2021. Impacto sobre el cambio climático del ciclo de vida de las tarimas de madera elaboradas en la región Huetar Norte de Costa Rica. Rev Cienc Ambient 55(1): 32–51. https://doi.org/10.15359/rca.55-1.2

The University of Manchester. 2020. Carbon Calculations over the Life Cycle Industrial Systems. http://www.ccalc.org.uk

Vásquez, M.; Milota, M.; Arijit, S. 2017. Quantifying environmental impacts of poplar biomass production in the US Pacific Northwest. Wood Fiber Sci 49(2): 193–205. https://wfs.swst.org/index.php/wfs/article/view/2548

Wermeille, A.; Colomb, V. 2020. AGRIBALYSE v3.0: the French agricultural and food LCI database. Methodology for the food products. ADEME, Angers, France. https://doc.agribalyse.fr/documentation-en/agribalyse-data/documentation

Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. 2016. The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21(9): 1218 1230. http://dx.doi.org/10.1007/s11367-016-1087-8.

Whittaker, C.; McManus, M.C.; Smith, P. 2013. A comparison of carbon accounting tools for arable crops in the United Kingdom. Environ Model Softw 46: 228–239. http://dx.doi.org/10.1016/j.envsoft.2013.03.015.

Downloads

Published

2022-06-13

How to Cite

Vásquez, M. ., Vásquez, L. ., Musule, R. ., & Iriarte, A. . (2022). Carbon footprint of wooden and plastic pallets: A quantification with different software tools. Maderas-Cienc Tecnol, 24. Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/5519

Issue

Section

Article