Changing the calculated surface area of wood samples to define drying schedules for Eucalyptus clones

Authors

  • Daiane de Moura Borges Maria
  • Natalino Calegario
  • Bruno Charles Dias Soares
  • Dáfilla Yara Oliveira de Brito
  • José Tarcísio Lima

DOI:

https://doi.org/10.4067/s0718-221x2022000100452

Keywords:

Drastic drying test, drying schedule parameters, drying quality, eucalypts, wood drying

Abstract

The aim of this study was to determine how varying the inputted surface area value of wood samples would affect the determination of kiln-drying schedules using the drastic drying test. For this purpose, eight individuals of two Eucalyptus clones were selected. Specimens were obtained for drastic drying tests at 100 °C, to measure the basic density and to determine the initial moisture content. The initial and final temperatures and the drying potential were calculated in 100 mm × 50 mm × 10 mm samples, considering the surface area to be 130 cm² (Updated Method), in contrast to the surface area of 100 cm² that is commonly used in the method known as the Standard Method. Based on these findings, kiln-drying schedules were set for the lumber from each clone. Although the significant differences aforementioned, it was observed that the drying schedules developed by Standard Method and Updated Method are similar.

Downloads

Download data is not yet available.

References

Awadalla, H.S.F.; El-Dib, A.F.; Mohamad, M.A.; Reuss, M.; Hussein, H.M.S. 2004. Mathematical modelling and experimental verification of wood drying process. Energy Convers Manag 45(2): 197-207. https://doi.org/10.1016/S0196-8904(03)00146-8

Barbosa, C.G.; Lima, J.T.; Rosado, S.C.S.; Trugilho, P.F. 2005. Elaboration of a drying schedule for Eucalyptus spp hybrids clones woods. Cerne 11(1): 40-48. http://www.cerne.ufla.br/site/index.php/CERNE/article/view/420

Batista, D.C.; Klitzke, R.J. 2012. Proposal of drying schedule for “Guajará” wood (Micropholis venulosa Mart. etEichler) Pierre, SAPOTACEAE. Braz J Wood Sci 3(1): 22-32. https://periodicos.ufpel.edu.br/ojs2/index.php/cienciadamadeira/article/view/4036 (In portuguese).

Batista, D.C.; Rocha, M.P.D.; Klitzke, R.J. 2015. Comparison between wood drying defect scores: specimen testing x analysis of kiln-dried boards. Rev Arvore 39(2): 395-403. https://doi.org/10.1590/0100-67622015000200019

Brandão, A.T.O. 1989. Determination of methodology for indicating wood drying programs. M.S. Thesis, Universidade de São Paulo, Piracicaba, Brasil. http://repositorio.ufra.edu.br/jspui/handle/123456789/350 (In Portuguese)

Brazilian Association of Technical Standards. 1997. ABNT NBR 7190: Wood structure projects. Rio de Janeiro, Brazil. https://www.academia.edu/34645241/NBR_7190_Projetos_De_Estrutura_De_Madeira (In portuguese).

Brazilian Association of Technical Standards. 2003. NBR 11941-02: Determination of basic density in wood. Rio de Janeiro, Brazil. https://www.abntcatalogo.com.br/norma.aspx?ID=002494 (In portuguese).

Lima, N.S.B de; Silva, H.A.P. e; Marchesan, R.; Souza, P.B. de. 2019. Indication of a drying program for native cerrado species. J Biotechnol Biodiversity 7(4): 434-442. https://doi.org/10.20873/jbb.uft.cemaf.v7n4.lima

Carlsson, P.; Tinnsten, M. 2002. Optimization of Drying Schedules Adapted for a Mixture of Boards with Distribution of Sapwood and Heartwood. Drying Technol 20(2): 403–418. https://doi.org/10.1081/DRT-120002549

Castro, A.F.N.M.; Castro, R.V.O.; Carneiro, A.D.C.O.; Santos, R.C.D.; Carvalho, A.M. M.L.; Trugilho, P.F.; Melo, I.C.N.A.D. 2016. Correlations between age, wood quality and charcoal quality of Eucalyptus clones. rev Arvore 40(3): 551-560. https://doi.org/10.1590/0100-67622016000300019

Ciniglio, G. 1998. Avaliacão da secagem de madeira serrada de E. grandis e E. urophylla. M.S. Thesis, Universidade de São Paulo, Piracicaba, Brasil. https://doi.org/10.11606/D.11.2019.tde-20191218-140202 (In Portuguese).

Effah, B.; Kofi, J.O. 2014. Development of Kiln-Drying Schedules for two lesser-known timber species in Ghana. J Sci Technol 6(1). https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/722

Eleotério, J.R.; Bagattoli, T.R.; Hornburg, K.F.; da Silva, C.M.K. 2015. Drastic drying of Eucalyptus and Corymbia wood provides information for the elaboration of drying programs. Pesqui Florest Bras 35(84): 451-457. https://doi.org/10.4336/2015.pfb.35.84.696 (In Portuguese).

Jankowsky, I.P.; Andrade, A.; Santos, G.R.V. 2012. Comparing methods to indicate conventional kiln schedules for tropical species. UFRO Wood Drying Conference 15(36): 60. https://www.ipef.br/publicacoes/stecnica/nr36/st036.pdf

Jankowsky, I.P.; Luiz, M.G. 2006. Review of Wood Drying Research in Brazil: 1984–2004. Drying Technol 24 (4): 447–455. https://doi.org/10.1080/07373930600611893

Kang, C.W.; Muszyński, L.; Hong, S.H.; Kang, H.Y. 2015. Preliminary tests for the application of an optical measurement system for the development of a kiln-drying schedule. Drying Technol 34(4): 483–490. https://doi.org/10.1080/07373937.2015.1060604

Klitzke, R.J.; Batista, D.C. 2010. Tests of drying rate and scoring of defects for the prediction of conventional kiln drying quality of Eucalyptus wood. Sci For 38(85): 97-105. https://www.ipef.br/publicacoes/scientia/nr85/cap09.pdf (in Portuguese).

Mauri, R.; Oliveira, J.T.S.; Tomazello Filho, M.; Rosado, A.M.; Paes, J.B.; Calegário, N. 2015. Density of clones of Eucalyptus urophylla x Eucalyptus grandis in different conditions of growth. Floresta 45(1): 193-202. http://dx.doi.org/10.5380/rf.v45i1.34114

Meneses, V.A.; Trugilho, P.F.; Calegario, N.; Leite, H.G. 2015. Effect of age and site on the basic density and dry mass of wood from a clone of Eucalyptus urophylla. Sci For 43(105): 101-116. https://www.cabdirect.org/cabdirect/abstract/20153251057

Monteiro, T.C.; Lima, J.T.; Hein, P.R.G.; Silva, J.R.M.; Neto, R.A; Rossi, L. 2021. Drying kinetics in Eucalyptus urophylla wood: analysis of anisotropy and region of the stem. Drying Technol https://doi.org/10.1080/07373937.2021.1918145

Ofori, J.; Brentuo, B. 2010. Drying characteristics and development of kiln drying schedules for the wood of Alstonia boonei, Antrocaryou micraster, Bombax buonopozense, Dialium aubrevillei and Sterculia rhinopetala. J Forest 26: 50-60. https://doi.org/10.4314/GJF.V26I1.66201

Phonetip, K.; Brodie, G.I.; Ozarska, B.; Belleville, B. 2018b. Drying timber in a solar kiln using an intermittent drying schedule of conventional laboratory kiln. Drying Technol 37(10): 1300-1312. https://doi.org/10.1080/07373937.2018.1496337

Phonetip, K.; Ozarska, B.; Belleville, B.; Brodie, G.I. 2018a. Comparing two intermittent drying schedules for timber drying quality. Drying Technol 37(2): 186-197. https://doi.org/10.1080/07373937.2018.1445638

Protásio, T.P.; Lima, M.D.R.; Scatolino, M.V.; Silva, A.B.; de Figueiredo, I.C.R.; Hein, P.R.G.; Trugilho, P.F. 2021.Charcoal productivity and quality parameters for reliable classification of Eucalyptus clones from Brazilian energy forests. Renew Energ 164: 34-45. http://dx.doi.org/10.1016/j.renene.2020.09.057

Santos, G.R.V.; Ferreira, J.R.A.; Carvalho, L.L.; Lira, R.B. 2012. Development of defects and scores for the elaboration of drying schedules and tropical species grouping. IUFRO Wood Drying Conference 15(36): 60. https://www.ipef.br/publicacoes/stecnica/nr36/st036.pdf

Shen, Y.; Gao, Z.; Hou, X.; Chen, Z.; Jiang, J.; Sun, J. 2019. Spectral and thermal analysis of Eucalyptus wood drying at different temperature and methods. Dry Technol 38(3): 313-320. https://doi.org/10.1080/07373937.2019.1566742

Simpson, W.T. 1991. Dry kiln operator’s manual. United States Department of Agriculture. Urbana, Champaign. https://www.esf.edu/wus/documents/DryKilnOperatorsManual.pdf

Soares, B.C.D.; Lima, J.T.; Rocha, M.F.V.; Araújo, A.C.C.D.; Veiga, T.R.L.A. 2019. Behavior of Juvenile and Mature Eucalyptus cloeziana Wood Subjected to Drastic Drying. FLORAM 26(3). https://doi.org/10.1590/2179-8087.087217

Soares, B.C.D.; Lima, J.T.; Silva, J.R.M. 2016. Analysing the drying behavior of juvenile and mature Eucalyptus saligna wood in drastic drying test for optimal drying schedule. Maderas-Cienc Tecnol 18(4): 543–554. http://dx.doi.org/10.4067/S0718-221X2016005000047

Soares, B.C.D; Lima, J.T.; Silva, J.R.M. 2021. Relationship between vessel parameters and cleavage associated with checking in Eucalyptus grandis wood. Maderas-Cienc Tecnol 23: 1-14. http://dx.doi.org/10.4067/s0718-221x2021000100443.

Taghiyari, H.R.; Habibzade, S.; Tari, S.M.M. 2014. Effects of Wood Drying Schedules on Fluid Flow in Paulownia Wood. Drying Technol 32(1): 89–95. https://doi.org/10.1080/07373937.2013.813855

Tari, S.M.M.; Habibzade, S.; Taghiyari, H.R. 2015. Effects of Drying Schedules on Physical and Mechanical Properties in Paulownia Wood. Drying Technol 33(15-16): 1981–1990. https://doi.org/10.1080/07373937.2014.948553

Terazawa, S. 1965. Methods for easy determination of kiln drying schedule of wood. Wood Ind 20(5): 216-226. (In Japanese)

Downloads

Published

2022-08-10

How to Cite

de Moura Borges Maria, D. ., Calegario, N. ., Dias Soares, B. C. ., Oliveira de Brito, D. Y. ., & Lima, J. T. (2022). Changing the calculated surface area of wood samples to define drying schedules for Eucalyptus clones. Maderas-Cienc Tecnol, 24, 1–12. https://doi.org/10.4067/s0718-221x2022000100452

Issue

Section

Article

Most read articles by the same author(s)