Wood and charcoal identification of five species from the miscellaneous group known in Brazil as “Angelim” by Near-IR and wood anatomy

Authors

  • Graciela Inés Bolzon de Muñiz
  • Mayara Elita Carneiro
  • Francielli Rodrigues Ribeiro Batista
  • Felipe Zatt Schardosin
  • Silvana Nisgoski

Keywords:

Carbonization, NIR spectroscopy, ray cells, species discrimination, wood vessels.

Abstract

Samples of wood sold as “angelim” in Brazil were studied. Disks from the trunks of Diplotropis purpurea, Hymenolobium petraeum, Parkia pendula, Vatairea guianensis and Vatairea paraensis were obtained from Mato Grosso state. Samples from pith to bark of each species were obtained, oriented in the three anatomical planes. Each sample was wrapped in aluminum foil and carbonized in a muffle furnace, with a final temperature of 450 °C and a heating rate of 1,66 °C min-1. The description of the anatomical elements of wood and charcoal samples followed the orientations of the International Association of Wood Anatomists, on the basis of 25 readings regarding frequency and tangential diameter of the vessels and height and width of the rays in micrometers. Infrared analyses were performed with a Bruker Tensor 37 spectrophotometer equipped with an integrating sphere and operating in reflectance mode, with resolution of 4 cm-1 and a spectral range of 10000-4000 cm-1. The wood and charcoal samples were placed on top of integrating sphere and one spectrum was obtained from each surface, resulting in six spectra for each physical sample. The results of anatomical analysis showed that the qualitative characteristics of wood remained in charcoal, so the method can be applied for species discrimination. When comparing cell dimensions, we observed different behavior between species in the same carbonization process in function of cell wall thickness and parenchyma distribution. In infrared analysis, pretreatment influenced adequate discrimination of “angelim” species in wood and charcoal. Linear discriminant analysis based on PCA scores and the region between 4000-6200 cm-1 was more efficient. Near infrared analysis can be used for differentiation of wood and charcoal of “angelim” species.

Downloads

Download data is not yet available.

References

Adedipe, O.E.; Dawsin-Andoh, A.B.; Slahor, J.; Osborn, A.L. 2008. Classification of red oak (Quercus rubra) and white oak (Quercus alba) wood using a near infrared spectrometer and soft independent modelling of class analogies. Journal of Near Infrared Spectroscopy 16(1):49-57.

American Society for Testing and Materials. 2000. Standard practices for infrared multivariate, quantitative analysis. ASTM E1655. Vol.03.06. West Conshohocken, Pennsylvania, USA.

Bächle, H.; Zimmer, B.; Wegener, G. 2012. Classification of thermally modified wood by FTNIR spectroscopy and SIMCA. Wood Science and Technology 46(6):1181-1192.

Braga, J.W.B.; Pastore, T.C.M.; Coradin, V.T.R.; Camargos, J.A.A.; Silva, A.R.D. 2011. The use of near infrared spectroscopy to identify solid wood specimens of Swietenia macrophylla (cites appendix II). IAWA Journal 32(2):285-296.

Brunner, M.; Eugster, R.; Trenka, E.; Bergamin-Strotz, L. 1996. FT-NIR spectroscopy and wood identification. Holzforschung 50(2):130-134.

Bylesjo, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. 2006. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics 20(8-10):341-351.

Carneiro, M.E.; Magalhães, W.L.E.; Nisgoski, S.; Muñiz, G.I.B. 2013. Classification of Pinus spp. veneers wood contaminated by blue stain fungi. Revista Árvore 37(2):369-375.

Casale, M.; Schimleck, L.R.; Espeyd, C. 2010. Classification of pernambuco (Caesalpinia echinata Lam.) wood quality by near infrared spectroscopy and linear discriminant analysis. Journal of Near Infrared Spectroscopy 18(6):435-442.

Ciosek, P.; Brzozka, Z.; Wroblewski, W.; Martinelli, E.; Di Natale, C.; D’Amico, A. 2005.

Direct and two-stage data analysis procedures based on PCA, PLS-DA and ANN for ISE-based electronic tongue - effect of supervised feature extraction. Talanta 67: 590-596.

Davrieux, F. ; Rousset, P.L.A.; Pastore, T.C.M.; Macedo, L.A.; Quirino, W.F. 2010. Discrimination of native wood charcoal by infrared spectroscopy. Química Nova 33(5):1093-1097.

Ferreira, G.C.; Gomes, J.I.; Hopkins, M.J.G. 2004. An anatomic study of Leguminosae species in the state of Pará commercialized as “angelim”. Acta Amazonica 34(3):387-398.

Gasson, P. 2011. How precise can wood identification be? Wood Anatomy’s role in support of the legal timber trade, especially CITES. IAWA Journal 32(2):137-154.

Geladi, P.; McDougall, D.; Martens, H. 1985. Linearization and scatter-correction for nearinfrared reflectance spectra of meat. Applied Spectroscopy 39(3):491-500.

Gonçalves, T.A.P.; Marcati, C.R.; Scheel-Ybert, R. 2012. The effect of carbonization on wood structure of Dalbergia violaceae, Stryphnodendron polyphyllum, Tapirira guianensis, Vochysia tucanorum and Pouteria torta from the Brazilian cerrado. IAWA Journal 33(1):73-90.

Goncalves, T.A.P.; Ballarin, A.W.; Nisgoski, S.; Muniz, G.I.B. 2014. A contribution to the identification of charcoal origin in Brazil I - Anatomical characterization of Corymbia and Eucalyptus. Maderas-Cienc Tecnol 16(30):323-336.

Hwang, S.W.; Horikawa, Y.; Lee, W.H.; Sugiyama, J. 2016. Identification of Pinus species related to historic architecture in Korea using NIR chemometric approaches. Journal of Wood Science 62:156-167.

IAWA.1989. List of microscopic features for hardwood identification. IAWA Bulletin 10(3):219-332.

Martens, H.; Jensen, S. A.; Geladi, P. 1983. Nordic Symposium on Applied Statistics, Skagenkaien; Stokkand Forlag Publishing: CITY, 1983, pp 208-234.

Monteiro, T.C.; Silva, R.V.; Lima, J.T.; Hein, P.R.G.; Napoli, A. 2010. Use of near infrared spectroscopy to distinguish carbonization processes and charcoal sources. Cerne 16(3):381-390.

Muñiz, G.I.B.; Nisgoski, S.; França, R.F.; Schardosin, F.Z. 2012. Comparative anatomy of wood and charcoal of Cedrelinga catenaeformis Ducke and Enterolobium schomburgkii Benth. for identification purposes. Scientia Forestalis 40(94):291-297.

Muñiz, G.I.B.; Carneiro, M.E.; Nisgoski, S.; Ramirez, M.G.L.; Magalhães, W.L.E. 2013. SEM and NIR characterization of four charcoal species. Wood Science and Technology 47(4):815-823.

Nisgoski, S.; Carneiro, M.E.; Muñiz, G.I.B. 2015a. Influencia de la granulometría de la muestra en la discriminación de especies de Salix por infrarrojo cercano. Maderas-Cienc Tecnol 17(1):195-204.

Nisgoski, S.; Muñiz, G.I.B.; Morrone, S.R.; Schardosin, F.Z.; França, R.F. 2015b. NIR and anatomy of wood and charcoal from Moraceae and Euphorbiaceae species. Ciência da Madeira

(3):183-190.

Nisgoski, S.; Schardosin, F.Z.; Batista, F.R.R.; Muñiz, G.I.B.; Carneiro, M.E. 2016. Potential use of NIR spectroscopy to identify Cryptomeria japonica varieties from southern Brazil. Wood Science and Technology 50(1):71-80.

Pastore, T.C.M.; Braga, J.W.B.; Coradin, V.T.R.; Magalhães, W.L.E.; Okino, E.Y.A.; Camargos, J.A.A.; De Muñiz, G.I.B.; Bressan, O.A.; Davrieux, F. 2011. Near infrared spectroscopy (NIRS) as a potential tool for monitoring trade of similar woods: discrimination of true magogany, cedar, andiroba and curupixá. Holzforschung 65(1):73-80.

Popescu, M.C.; Popescu, C.M.; Lisa, G.; Sakata, Y. 2011. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. Journal of Molecular Structure 988:65-72.

Rinnan, A.; Van den Berg, F.; Engelsen, B. 2009. Review of the most common pre-processing techniques for near-infrared spectra. Trends in Analytical Chemistry 28(10): 1201-1222.

Russ, A.; Firesova, M.; Gigac, J. 2009. Preliminary study of wood species identification by NIR spectroscopy. Wood Research 54(4):23-32.

Sandak, A.; Sandak, J.; Negri, M. 2011. Relationship between near-infrared (NIR) spectra and the geographical provenance of timber. Wood Science and Technology 45(1):35-48.

Siesler, H.W.; Ozaki, Y.; Kawata, S.; Heise, M. 2002. Near infrared spectroscopy: principle, instrumentation and applications. Wiley-VCH Verlag GmbH, Weinheim, Germany.

Smith, A.J.; MacDonald, M.J.; Ellis, L.D.; Obrovac, M.N.; Dahn, J.R. 2012. A small angle X-ray scattering and electrochemical study of the decomposition of wood during pyrolysis. Carbon 50:3717-3723.

Soares, W.F.; Melo, L.E.L.; Lisboa, P.L.B. 2014. Anatomy of five wood species marketed as ‘sucupira’. Floresta e Ambiente 21(1):114-125.

Schwanninger, M.; Rodrigues, J.C.; Fackler, K. 2011. A review of band assignments in near infrared spectra of wood and wood components. Journal of Near Infrared Spectroscopy 19:287-308.

Stumpe, B.; Engel, T.; Steinweg, B.; Marschner, B. 2012. Application of PCA and SIMCA statistical analysis of FT-IR spectra for the classification and identification of different slag types with environmental origin. Environmental Science and Technology 46(7):3964-3972.

Tominaga, Y. 1999. Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN. Chemometrics and Inteliggent Laboratory Systems 49:105-115.

Tsuchikawa, S.; Inoue, K.; Noma, J.; Hayashi, K. 2003. Application of near-infrared spectroscopy to wood discrimination. Journal of Wood Science 49:29-35.

Tsuchikawa, S.; Schwanninger, M. 2013. A review of recent near-infrared research for wood and paper (Part 2). Applied Spectroscopy Reviews 48:560-587.

Tsuchikawa, S.; Siesler, H.W. 2003. Near-Infrared spectroscopy monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I. Softwood. Applied Spectroscopy 57(6):667-674.

Yonenobu, H.; Tsuchikawa, S. 2003. Near-Infrared spectroscopic comparison of antique and modern wood. Applied Spectroscopy 57(11):1451-1453.

Zhang, X.; Yu, H.; Li, B.; Li, W.J.; Li, X.; Bao, C. 2014. Discrimination of Pinus yunnanensis, P. kesiya and P. densata by FT-NIR. Journal Chemical Pharmaceutical Resources 6(4):142-149.

Downloads

Published

2016-06-27

How to Cite

Bolzon de Muñiz, G. I., Elita Carneiro, M., Rodrigues Ribeiro Batista, F., Zatt Schardosin, F., & Nisgoski, S. (2016). Wood and charcoal identification of five species from the miscellaneous group known in Brazil as “Angelim” by Near-IR and wood anatomy. Maderas. Ciencia Y Tecnología, 18(3), 505–522. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/2452

Issue

Section

Article

Most read articles by the same author(s)

<< < 1 2