An exploratory evaluation of the pulpability of Brachystegia spiciformis and Pericopsis angolensis from the angolan miombo woodlands
Keywords:
Derived wood properties, kraft pulping, strength properties, wood anatomy, wood chemistryAbstract
Brachystegia spiciformis and Pericopsis angolensis are two hardwood species found in the Miombo woodlands. The wood features, kraft pulping and strength pulp properties of both species were evaluated in order to determine their potential as raw material for papermaking. Brachystegia spiciformis wood density was 640 kg m-3 and Pericopsis angolensis was 795 kg m-3. Pericopsis angolensis wood has higher cell wall thickness and occluded fibre lumen as remarkable anatomical properties. Runkel ratio, slenderness ratio, and the coefficients of flexibility and rigidity in Brachystegia spiciformis were 1.5, 65.7, 41.2% and 29.4%, while in Pericopsis angolensis these values were 17.6, 59.9, 5.4% and 47.3%, respectively. Brachystegia spiciformis has a higher cellulose content, lower hemicellulose and lignin content, and higher S/G ratio than Pericopsis angolensis. In kraft pulping, a higher demand of active alkali was needed for both species, and pulps with high kappa number (24–27) and low pulp yield (40%) were obtained. Pericopsis angolensis pulps reached tensile, tear and burst indexes of 99.6 Nm g-1, 5.9 mN.m2 g-1 and 4.9 kPa.m2 g-1, respectively. Brachystegia spiciformis pulps reached tensile, tear and burst indexes of 100.3 Nm g-1, 10.7 mN.m2 g-1 and 6.1 kPa.m2 g-1, respectively. As a conclusion, Brachystegia spiciformis wood has better pulpability than Pericopsis angolensis wood, according to its pulps properties, despite of the similar pulp yield between both species. Both species may be suitable for unbleached wrapping papers and rigid cardboards manufacturing.
Downloads
References
Abbot, P.G.; Lowore, J.D. 1999. Characteristics and management potential of some indigenous firewood species in Malawi. Forest Ecology and Management 119: 111–121.
Afe, A.J. 2016a. Comparative studies of the chemical nature of ethanol product of selected wood species. Forest Research 5: 185.
Afe, A.J. 2016b. Examination of chemical properties of ethanol product of Brachystegia eurichoma wood. Forest Research 5: 186.
Aguayo, M.G.; Ferraz, A.; Elissetche, J.P.; Masarin, F.; Mendonça, R.T. 2014. Lignin chemistry and topochemistry during kraft delignification of Eucalyptus globulus genotypes with contrasting pulpwood genotypes with contrasting pulpwood characteristics. Holzforschung 68: 623–629.
Aguayo, M.G.; Ruiz, J.; Norambuena, M.; Mendonça, RT. 2015. Structural features of dioxane lignin from Eucalyptus globulus and their relationship with the pulp yield of contrasting genotypes. Maderas. Ciencia y Tecnología 17: 625–636.
Aguayo, M.G.; Quintupill, L.; Castillo, R.; Baeza, J.; Freer, J.; Mendonça, R.T. 2010. Determination of differences in anatomical and chemical characteristics of tension and opposite wood of 8-year old Eucalyptus globulus. Maderas. Ciencia y Tecnología 12: 241–251.
Akgul, M.; Tozluoglu, A. 2009. Some chemical and morphological properties of juvenile woods from Beech (Fagus orientalis L.) and Pine (Pinus nigra A.) plantations. Trends in Applied Sciences Research. 4: 116–125.
Ali, A.C.; Uetimane, J.E.; Lhate, I.A.; Terziev, N. 2008. Anatomical characteristics, properties and use of traditionally used and lesser-known wood species from Mozambique: a literature review. Wood Science and Technology 42: 453–472.
Atuanya, C.U.; Ibhadode, A.O.A. 2011. Characterization of okhuen (Brachystegia Nigerica) wood as a potential reinforcement for polymer composites. International Journal of Engineering & Technology 11: 116004–7272.
Azeez, M.A.; Andrew, J.E.; Sithole, B.B. 2016. A preliminary investigation of Nigerian Gmelina arborea and Bambusa vulgaris for pulp and paper production. Maderas. Ciencia y Tecnología. 18: 65–78.
Boerjan, W.; Ralph, J.; Baucher, M. 2003. Lignin biosynthesis. Annual Review of Plant Biology. 54: 519–546.
Carballo, A.L.R.; Orea, I.U.; Cordero, M.E. 2004. Composición química de tres maderas en la provincia del Pinar del Río, Cuba. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 10: 57–62.
Carrillo, I.; Aguayo, M.G.; Valenzuela, S.; Mendonça, R.T.; Elissetche, J.P. 2015. Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with different wood density. Wood Research 60: 1–10.
Carrillo, I.; Vidal, C.; Elissetche, J.P.; Mendonça, R.T. 2017. Wood anatomical and chemical properties related to the pulpability of Eucalyptus globulus: a review. Southern Forests 1–8.
Chen, C. 1992. Nitrobenzene and cupric oxide oxidations. In: Methods in lignin chemistry. Lin, S.Y.; Dence, C.W. (eds.), Methods in lignin chemistry. Berlin: Springer-Verlag.
Cuvilas, C.; Lhate, I.; Jirjis, R.; Terziev, N. 2014. The characterization of wood species from Mozambique as a fuel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36: 851–857.
De Almeida, C.C.F.; Rios, P.D.; da Cunha, A.B.; Ampessan, C.G.M.; Spanhol, A. 2016. Applicability evaluation of Cupressus lusitanica for pulp production. Maderas. Ciencia y Tecnología 18: 651–662.
Dean, G.H. 1995. Objectives for wood fibre quality and uniformity. In: Potts, B.M.; Borralho, N.M.G.; Reid, J.B.; Cromer, R.N.; Tibbits, W.N.; Raymond, C.A. (eds), Eucalypts plantations: improving fibre yield and quality. CR-IUFRO Conference. 19–24 February, Hobart, Australia.
Del Río, J.C.; Gutiérrez, A.; Hernando, M.; Landín, P.; Romero, J.; Martínez, A.T. 2005. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. Journal of Analytical and Applied Pyrolysis 74: 110–115.
Delgado-Matas, C.; Pukkala, T. 2012. Growth and yield of nine species in Angola. Journal of Forestry Research. 23: 197–204.
Dutt, D.; Tyagi, C.H. 2011. Comparison of various eucalyptus species for their morphological, chemical, pulp and paper making characteristics. Indian Journal of Chemical Technology 18: 145–151.
Ek, M.; Gellerstedt, G.; Henriksson, G. 2009. Pulp and paper chemistry and technology. Vol. 1. Wood chemistry and wood biotechnology. Berlin: GmbH & Co. KG.
Fengel, D.; Wegener, G. 1989. Wood: Chemistry, Ultrastructure, Reactions. Berlin. Walter de Gruyter.
Figueiredo, E.; Smith, G.F.; César, J. 2009. The flora of Angola: first record of diversity and endemism. Taxon 58: 233–236.
Frost, P. 1996. The ecology of miombo woodlands. In: Campbell, B. (eds). The miombo in transition: Woodlands and welfare in Africa. Center for International Forestry Research. Bogor, Indonesia.
Grundy, I.M. 2006. Age determination of Miombo species Brachystegia spiciformis (Leguminosae-Caesalpinoideae) in Zimbabwe using growth rings. Southern African Forestry Journal 206: 5–12.
Guerra, A.; Elissetche, J.P.; Norambuena, M.; Freer, J.; Valenzuela, S.; Rodríguez, J.; Balocchi, C. 2008. Influence of lignin structural features on Eucalyptus globulus kraft pulping. Industrial & Engineering Chemistry Research 47: 8542–8549.
Heinrichs, J.F.; Lassen, L.E. 1970. Improved technique for determining the volume of irregularly shaped wood blocks. Forest Products Journal 20(4): 24.
Hudson, I.; Wilson, L.; Van Beveren, K. 1998. Vessel and fibre property variation in Eucalyptus globulus and Eucalyptus nitens: some preliminary results. IAWA Journal 19: 111–130.
Hus, S.; Tank, T.; Gosksal, E. 1975. Considering eucalyptus (E. camaldulensis Dehnh.) wood which grows in Turkey (in Tarsus-Karabacak), Morphology and opportunity for evaluating semi chemical cellulose in paper industry, Tubitak publication, USA.
Istas, J.R.; Heremans, R.; Roekelboom, E.L. 1954. Caracteres generaux de bois feuillus du Congo Belge en relation avec leur utilization dans I’industrie des pates a papier: Etude detaillee de quelques essences. Gembloux: INEAC (Serie Technique, No. 43).
Kiaei, M.; Samariha, A.; Kasmani, E. 2011. Characterization of biometry and the chemical and morphological properties of fibers from bagasse, corn, sunflower, rice and rapeseed residues in Iran. African Journal of Agricultural Research. 6: 3762–3767.
Leal, S.; Pereira, H.; Grabner, M.; Wimmer, R. 2003. Clonal and site variation of vessels in 7-year-old Eucalyptus globulus. IAWA Journal 24: 185–195.
Lhate, I.; Cuvilas, C.; Terziev, N.; Jirjis, R. 2010. Chemical composition of traditionally and lesser used wood species from Mozambique. Wood Material Science and Engineering 5: 143–150.
Louppe, D.; Oteng-Amoako, A.A.; Brink, M. 2008. Plant resources of tropical Africa (7) 1. Timbers 1. PROTA Foundation. Wageningen. Netherlands. Backhuys Publishers, Leiden.
Luce, G.E. 1970. The physics and chemistry of wood pulp fibers. In: STAP No. 8, TAPPI, New York.
Mansfield, SD.; Weineisen, H. 2007. Wood fibre quality and kraft pulping efficiencies of trembling aspen (Populus tremuloides michx.) clones. Journal of Wood Chemistry and Technology 27: 135–151.
Martínez, P.; Pereira, M.; Mendonça, R.T. 2015. Retention and structure of xylans from Eucalyptus globulus genotypes with different pulpwood characteristics. Journal of Wood Chemistry and Technology 35: 129–136.
Mendonça, R.T.; Jara, J.F.; González, V.; Elissetche, J.P.; Freer, J. 2008. Evaluation of the white-rot fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. Journal of Industrial Microbiology & Biotechnology 35: 1323–1330.
Ministério da Agricultura Desenvolvimento Rural e das Pescas, MINADERP. 2011. Perfil florestal de Angola. Jornada técnica científica sobre florestas e seguranca alimentar em Angola. 30–28 September, Luanda, Angola.
Miranda, I.; Pereira, H. 2002. Variation of pulpwood quality with provenances and site in Eucalyptus globulus. Annals of Forest Science 59: 283–291.
Noah, A.S.; Abiola, J.K.; Ayeni, O.D.; Bamidele, O.D. 2014. Comparative assessment of selected acoustic properties of talking drums made from wood of Gmelina arborea (Roxb) and Brachystegia eurycoma (Harms). Journal of Multidisciplinary Engineering Science and Technology 5:1.
Ohshima, J.; Yokota, S.; Yoshizawa, N.; Ona, T. 2004. Within-tree variation of detailed fiber morphology and its position representing the whole-tree value in Eucalyptus camaldulensis and Eucalyptus globulus. In: Ona, T. (eds). Improvement of Forest Resources for Recyclable Forest Products. Springer Japan.
Olufemi, B. 2012. Yield and mechanical properties of veneer from Brachystegia nigerica. Journal of Forestry Research 23: 295–298.
Olufunmilayo, O.D. 2013. Determination of pulp and paper making suitability indices of some Nigerian species Leguminosae: Caesalpinoideae. Academic Journal of Interdisciplinary Studies. 13: 61–68.
Ona, T.; Sonoda, T.; Ito, K.; Shibata, M.; Tamai, Y.; Kojima, K.; Ohshima, J.; Yokoys, S.; Yoshizawa, N. 2001. Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree property variations. Wood Science and Technology. 35: 229–243.
Palgrave, M.C. 2002. (eds). Trees of Southern Africa. Cape Town. Random House Struik (Pty) Ltd.
Pan, G.X.; Spencer, L.; Leary, G.J. 2000. A comparative study on reactions of hydrogen peroxide and peracetic acid with lignin chromophores. Holzforschung 54: 144–152.
Pinto, P.C.; Evtuguin, D.V.; Neto, C.P. 2005. Effect of structural features of wood biopolymers on hardwood pulping and bleaching performance. Industrial & Engineering Chemistry Research 44: 9777–9784.
Quilhó, T.; Miranda, I.; Pereira, H. 2006. Within-tree variation in wood fibre biometry and basic density of the urograndis eucalypt hybrid (Eucalyptus grandis× Eucalyptus urophylla). IAWA Journal 27: 243–254.
Ramírez, M.; Rodriguez, J.; Balocchi, C.; Peredo, M.; Elissetche, J.P.; Mendonça, R.; Valenzuela, S. 2009. Chemical composition and wood anatomy of Eucalyptus globulus clones: variations and relationships with pulpability and handsheet properties. Journal of Wood Chemistry and Technology 29: 43–58.
Rencoret, J.; Marques, G.; Gutiérrez, A.; Ibarra, D.; Li, J.; Gellerstedt, G.; Santos, J.I.; Jiménez-Barbero, J.; Martínez, A.T.; Del Río, J.C. 2008. Structural characterization of milled wood lignin from different eucalypt species. Holzforschung 62: 514–526.
Retulainen, E. 1997. The role of fibre bonding in paper properties. Reports Series A7, Helsinki University of Technology, Laboratory of Paper Technology, Espoo, Finland.
Runkel, R.O.H. 1949. Über die Herstellung von Zellstoff aus Holz der Gattung Eucalyptus und Versuche mit zwei unterschiedlichen Eucalyptusarten. Das Papier 3: 476–490.
Sangumbe, L.M.V.; Pereira, E.A. 2014. Recovery of degraded areas of training of Miombo with exotic species of Eucalyptus sp and Pinus sp in Huambo. Revista Forestal Baracoa 33: 566–573.
Silva, M.L. 1971. Algunas notas sobre a cultura do eucalipto em Angola. I.I.A.A. Serie Técnica Nova Lisboa Nº 24. Instituto de Investigacao Agronómica de Angola.
Sundberg, A.; Sundberg, K.; Lillandt, C.; Holmbom, B. 1996. Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nordic Pulp and Paper Research Journal 226: 216–219.
Trouet, V.; Haneca, K.; Coppin, P.; Beeckman, H. 2001. Tree ring analysis of Brachystegia spiciformis and Isoberlinia tomentosa: evaluation of the enso-signal in the Miombo woodland of eastern Africa. IAWA Journal 22: 385–399.
Tutus, A.; Kazaskerglu, Y.; Cicekler, M. 2015. Evaluation of tea wastes in usage pulp and paper production. BioResources 10: 5407–5416.
Uetimane, J.E.; Terziev, N.; Daniel, G. 2009. Wood anatomy of three lesser known species from Mozambique. IAWA Journal 30: 277–291.
Via, B.K.; Stine, M.; Shupe, T.; So, C.H.; Groom, L. 2004. Genetic improvement of fiber length and coarseness based on paper product performance and material variability—A review. IAWA Journal 25: 401–414.
Vila, C.; Santos, V.; Parajó, J.C. 2004. Dissolving pulp from TCF bleached acetosolv beech pulp. Journal of Chemical Technology and Biotechnology 79: 1098–1104.
Wangaard, F.F. 1962. Contributions of hardwood fibers to the properties of kraft pulps. TAPPI 45: 548–556.
Xu, F.; Zhong, X.C.; Sun, R.C.; Lu, Q. 2006. Anatomy, ultrastructure, and lignin distribution un cell wall of Caragna Korshinskii. Industrial Crops and Products. 24: 186–193.
Yokoyama, T.; Kadla, J.F.; Chang, H.M. 2002. Microanalytical method for the characterization of fibre components and morphology of woody plants. Journal of Agricultural and Food Chemistry 50: 1040–1044.