Planting density effect on some properties of Schizolobium parahyba wood


  • Luiz Eduardo de Lima Melo
  • Claudia de Jesus Silva
  • Thiago de Paula Protásio
  • Graciene da Silva Mota
  • Iedo Souza Santos
  • Claudia Viana Urbinati
  • Paulo Fernando Trugilho
  • Fábio Akira Mori


Amazon, anatomical structure, basic density, paricá wood, radial variation, stocking density


This study aims to understand the effect of the initial planting density on the anatomical variability and basic wood density of Schizolobium parahyba var. amazonicum in a planted forest in Amazonia. The effect of the initial planting density on the radial variation from pith to bark of anatomy and basic density was evaluated. There were two planting densities, planting density-I (624 trees ha-1) and planting density-II (312 trees ha-1). Planting density significantly affected only the ray height, fiber length and wall thickness. Radial position was not significant to the height of the rays and the fiber lumen diameter. The interaction planting density × radial position was only significant for the length of the vessel elements, ray frequency and fiber length. The results indicate that the initial planting density influences the radial behavior of certain anatomical characteristics. To obtain gain in terms of total wood per cultivated area, without harm to the density of the produced wood, planting density-I would be most useful, while planting density-II would be suitable for the production of more homogeneous wood, which tends to form adult wood in advance and with some anatomical characteristics appropriate for the plywood industry.


Download data is not yet available.


Albino, V.C.S.; Mori, F.A.; Mendes, L.M. 2012. Influência das características anatômicas e do teor de extrativos totais da madeira de Eucalyptus grandis W. Hill ex Maiden na qualidade da colagem. Ciência Florestal 22: 803-811.

Aloni, R. 2013. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation. Planta 238: 819-830.

Aloni, R.; Zimmermann, M.H. 1983. The control of vessel size and density along the plant axis - a new hypothesis. Differentiation 24: 203-208.

Alvino, F.O.; Silva, M.F.F.; Rayol, B.P. 2005. Potencial de uso das espécies arbóreas de uma floresta secundária, na Zona Bragantina, Pará, Brasil. Acta Amazonica 35: 413-420.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. 2003. NBR 11941: Madeira - determinação da densidade básica. Rio de Janeiro, 6 p.

ABRAF - ASSOCIAÇÃO BRASILEIRA DE PRODUTOS FLORESTAIS. 2012. Anuário ABRAF 2012 ano base 2011. Brasília. 145 p.

Bailey, I.W. 1920. The cambium and its derivative tissues II. Size variations of cambial initials in gymnosperms and angiosperms. American Journal of Botany 7: 355–367.

Barghoorn, E.S. 1941. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. II. Modification of the multiseriate and uniseriate rays. American Journal of Botany 28: 273–282.

Barneby, R.C. 1996. Neotropical Fabales at NY: Asides and Oversights. Brittonia 48: 174-187.

Bowyer, J.L.; Shmulsky, R.; Haygreen, J.G. 2007. Forest products and wood science: an introduction, 5th edn. Blackwell, Iowa, p 558.

Burgert, I.; Eckstein, D. 2001. The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees. Trees 15: 168-170.

Cassidy, M.; Palmer, G.; Smith, R.G.B. 2013. The effect of wide initial spacing on wood properties in plantation grown Eucalyptus pilularis. New Forests 44: 919-936.

Cobas, A. C.; Area, M. C.; Monteoliva, S. 2013. Transición de madera juvenil a madura en un clon de Populus deltoides implantado en Buenos Aires Argentina. Maderas. Ciencia y tecnologia 15(2): 223-234.

de Lima, I.L.; Florsheim, S.M.B.; Longui, E.L. 2009. Influência do espaçamento em algumas propriedades físicas madeira de Tectona grandis Linn. Cerne 15: 244-250.

de Lima, I.L.; Garcia, R.; Longui, E.L.; Florsheim, S.M.B. 2011. Dimensões anatômicas da madeira de Tectona grandis Linn. Em função do espaçamento e da posição radial do tronco. Scientia Forestalis 39: 61-68.

Franklin, G.L. 1945. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155: 51.

Furukawa, I.; Sekoguchi, M.; Matsuda, M.; Sakuno, T.; Kishimoto, J. 1983. Wood quality of small hardwoods II. Horizontal variations in the length of fibers and vessel elements in seventy-one species of small hardwoods. Kouyoujyu Kenkyu 2: 103–134.

Downes, G.; Harwood, C.; Washusen, R.; Ebdon, N.; Evans, R.; White, D.; Dumbrell, I. 2014. Wood properties of Eucalyptus globulus at three sites in Western Australia: effects of fertiliser and plantation stocking. Australian Forestry 77: 179-188.

Dunisch, O.; Reissmann, C.B.; Oliszeski, A. 2004. Variability of vessel characteristics in the xylem of Ilex paraguariensis (mate-tree) from South Brazil. IAWA Journal 25: 449-458.

IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull. n.s. 10: 219–332.

Ishiguri, F.; Hiraiwa, T.; Iizuka, K.; Yokota, S.; Priadi, D.; Sumiasri, N.; Yoshizawa, N. 2009. Radial variation of anatomical characteristics in Paraserianthes falcataria planted in Indonesia. IAWA Journal 30: 343-352.

Johansen, D.A. 1940. Plant microtechnique. McGraw-Hill Book Co., Inc., New York.

Kitin, P.; Funada, R.; Sano, Y.; Beeckman, H.; Ohtani, J. 1999. Variations in the lengths of fusiform cambial cells and vessel elements in Kalopanax pictus. Annals of Botany 84: 621-632.

Kraus, J.E.; Arduin, M. 1997. Manual básico de métodos em morfologia vegetal. Rio de Janeiro, EDUR. 25 pp.

Levyadun, S.; Aloni, R. 1995. Differentiation of the ray system in woody-plants. The Botanical Review 61: 45-84.

Lewis, G.P. 2015. Schizolobium in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro.

Lobão, M.S.; Costa, D.P.; Almonacid, M.A.A.; Tomazello Filho, M. 2012. Qualidade do lenho de árvores de Schizolobium parahyba var. amazonicum Acre, Brasil. Floresta e Ambiente 19: 374-384.

Longui, E.L.; de Lima, I.L.; Andrade, I.M.; Freitas, M.L.M.; Florsheim, S.M.B.; Zanatto, A.C.S.; da Silva, F.G. 2011. Seed provenance influences the wood structure of Gallesia integrifolia. IAWA Journal 32: 361-374.

Melo, L.E.L.; Silva, C.J.; Protásio, T.P.; Trugilho, P.F.; Santos, I.S.; Urbinati, C.V. 2014. Influence of spacing on some physical properties of Schizolobium parahyba var. amazonicum (Huber ex Ducke). Scientia Forestalis 42: 483-490.

Naji, H.R.; Bakar, E.S.; Soltani, M.; Ebadi, S.E.; Abdul-Hamid, H.; Javad, S.K.S.; Sahri, M.H. 2014. Effect of Initial Planting Density and Tree Features on Growth, Wood Density, and Anatomical Properties from a Hevea brasiliensis Trial Plantation. Forest Products Journal 64: 41-47.

Naji, H.R.; Sahri, M.H.; Nobuchi, T.; Bakar, E.S. 2012. Clonal and planting density effects on some properties of rubber wood (Hevea brasiliensis muell. Arg.). Bioresources 7: 189-202.

Naji, H.R.; Sahri, M.H.; Nobuchi, T.; Bakar, E.S. 2013. Radial variation of wood cell features under different stocking densities management of two new clones of rubberwood (Hevea brasiliensis). Journal of Wood Science 59: 460-468.

O'Brien, M.J.; Leuzinger, S.; Philipson, C.D.; Tay, J.; Hector, A. 2014. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change 4: 710-714.

Omonte, V.; Valenzuela, L. 2011. Variación radial y longitudinal de la densidad básica en árboles de Eucalyptus regnans de 16 años. Maderas. Ciencia y tecnologia 13(2):211-224.

Plavcová, L.; Jansen., S. 2015. The role of xylem parenchyma in the storage and utilization of non-structural carbohydrates. In: Hacke UG (Ed.), Functional and ecological xylem anatomy: 209–234. Springer, Switzerland.

Rahman, M.M.; Fujiwara, S.; Kanagawa, Y. 2005. Variations in volume and dimensions of rays and their effect on wood properties of teak. Wood and Fiber Science 37: 497-504.

Rondon, E.V. 2002. Produção de biomassa e crescimento de árvores de Schizolobium amazonicum (Huber) Ducke sob diferentes espaçamentos na região de mata. Revista Arvore 26: 573-576.

Roque, R.M.; Ledezma, V.A. 2003. Efecto del espaciamiento em plantación sobre las propiedades físicas de madera de teca a lo largo del fuste. Madera y Bosques 9: 15-27.

Saffian, H.A.; Tahir, P.M.; Harun, J.; Jawaid, M.; Hakeem, K.R. 2014. Influence of Planting Density on the Fiber Morphology and Chemical Composition of a New Latex-timber Clone Tree of Rubberwood (Hevea brasiliensis Muell. Arg.). Bioresources 9: 2593-2608.

Sauter, J.J.; Vancleve, B. 1994. Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees 8: 297-304.

Schuldt, B.; Leuschner, C.; Brock, N.; Horna, V. 2013. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Tree Physiology 33: 161-174.

Silva, M.G; Mori, F.A.; Ferreira, G.C.; Ribeiro, A.O.; Carvalho, A.G.; Barbosa, A.C.M.C. 2016. Estudo anatômico e físico da madeira de Schizolobium parahyba var. amazonicum proveniente de povoamentos nativos da Amazônia Oriental. Scientia Forestalis 44: 15-27.

Singh, A.P.; Dawson, B.S.W. 2004. Confocal microscope - A valuable tool for examining wood-coating interface. Journal of Coatings Technology and Research 1: 235-237.

Smith, M.J.; Dai, H.M.; Ramani, K. 2002. Wood-thermoplastic adhesive interface - method of characterization and results. International Journal of Adhesion and Adhesives 22: 197-204.

Sorce, C.; Giovannelli, A.; Sebastiani, L.; Anfodillo, T. 2013. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Reports 32: 885-898.

Strasburger, E. 1924. Handbook of practical botany for the botanical laboratory and private student. 8th ed. London, George Allen and Unwin, Ltd.

Sun, Q.; Suzuki, M. 2001. Quantitative character variations of cambial derivatives in mangroves and their functional significance. Trees 15: 249-261.

Tsuchiya, R.; Furukawa, I. 2009. Radial variation in the size of axial elements in relation to stem increment in Quercus serrata. IAWA Journal 30: 15-26.

Tsuchiya, R.; Furukawa, I. 2010. Relationship between the radial variation of ray characteristics and the stages of radial stem increment in Zelkova serrata. Journal of Wood Science 56: 495-501.

Viégas, I.J.M.; Ramos, E.J.A.; Thomaz, M.A.A.; Sato, T. 2007. Efeito da adubação de NPK em plantas jovens de paricá. Embrapa Pará – Belém 8 p. (Embrapa Pará - Belém. Comunicado Técnico, 193).

Warren, E.; Smith, R.G.B.; Apiolaza, L.A.; Walker, J.C.F. 2009. Effect of stocking on juvenile wood stiffness for three Eucalyptus species. New Forest. 37: 241-250.

Weber; J.C., Sotelo Montes, C. 2010. Correlations and clines in tree growth and wood density of Balanites aegyptiaca (L.) Delile provenances in Niger. New Forests 39: 39–49.

Zhao, X.P. 2016. Spatial variation of vessel grouping in the xylem of Betula platyphylla Roth. Journal of Plant Research 129: 29-37.

Zheng, J.M.; Martinez-Cabrera, H.I. 2013. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany 112: 927-935.

Zobel, B.J.; Van Buijtenen, J.P. 1989. Wood Variation: Its Causes and Control. Springer-Verlag, Berlin. 363 pp.




How to Cite

de Lima Melo, L. E., de Jesus Silva, C., de Paula Protásio, T., da Silva Mota, G., Souza Santos, I., Viana Urbinati, C., Fernando Trugilho, P., & Akira Mori, F. (2018). Planting density effect on some properties of Schizolobium parahyba wood. Maderas. Ciencia Y Tecnología, 20(3), 381–394. Retrieved from




Most read articles by the same author(s)