Selection of superior clones of Corymbia hybrids based on wood and charcoal properties

Authors

  • Breno Assis Loureiro
  • Túlio Anselmo Sacramento Vieira
  • Luciano Junqueira Costa
  • Alanna Barishinikov Silva
  • Maíra Reis de Assis
  • Paulo Fernando Trugilho

Keywords:

Bioenergy, carbonization, elemental compositions, heating values, thermal characterization

Abstract

The use of fast-growing trees is a good economic strategy for charcoal production. Wood with adequate chemical and physical properties generally is positively correlated with charcoal quality. The objective of this research was to evaluate wood quality from fast-growing hybrids for charcoal production. Three Corymbia citriodora x Corymbia torelliana and four Corymba torelliana x Corymba citriodora hybrid clones were evaluated. Parameters used to evaluate wood quality were wood basic density, elemental and structural chemical composition, energy efficiency and thermogravimetric analysis and the parameters evaluated for charcoal quality were apparent relative density, gravimetric yield, high heating value, proximate analysis and energy efficiency. All clones had wood basic density superior than 0.5 g cm-3 and ash inferior than 1%, which are desirable for a good quality of charcoal. Lignin content did not differ among clones with an average less than the 28% recommended for energetic use. Besides clones differed in wood parameters, as dry matter, high heating value, energy density, total extractives, holocellulose content, it did not reflect in charcoal quality differences. Wood from all clones had equal and satisfying high heating value of charcoal and energy efficiency quality for charcoal production and differed in apparent relative density and ash content.

Downloads

Download data is not yet available.

References

ABNT. 1986. NBR 8112: Carvão vegetal - Análise imediata - Método de ensaio, Rio de Janeiro.

ABNT. 2003. NBR 11941: Wood - Determination of basic density, Rio de Janeiro.

ABNT. 2017. NBR 13999: Paper, board, pulps and wood — Determination of residue (ash) on ignition at 525 °C, Rio de Janeiro.

ASTM. 2003. E 711-87: Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter. ASTM International, West Conshohocken, PA.

ASTM. 2007. ASTM D1762-84: Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM International, Conshohocken, PA.

ANDRADE, F.W.C.; TOMAZELLO FILHO, M.; MOUTINHO, V.H.P. 2018. Influence of wood physical properties on charcoal from Eucalyptus spp. Floresta e Ambiente 25 (3): 1-8.

ASSIS, M.R., TRUGILHO, P.F., ROSADO, S.C.D.S., PROTÁSIO, T.P., GOULART, S.L. 2015. Modelagem da biomassa e do estoque de carbono em plantas jovens de Eucalyptus. Scientia Forestalis 43(105): 401-408.

BASU, P. 2010. Biomass gasification and pyrolysis: Practical Design. Elsevier, Oxford.

BRITO, J. O.; BARRICHELO, L. E. G. 1980. Correlações entre características físicas e químicas da madeira e a produção de carvão: 2. densidade da madeira x densidade do carvão. IPEF 20:121-126.

BRUZUAL, C. F. 2015. Assessment of CO2 mitigation potential, biomass use and plantation areas to sustain charcoal-ironmaking. Journal of Materials Research and Technology 12(4), 325-334.

CHRZAZVEZ, J., THÉRY-PARISOT, I., FIORUCCI, G., TERRAL, J. F., THIBAUT, B. 2014. Impact of post-depositional processes on charcoal fragmentation and archaeobotanical implications: experimental approach combining charcoal analysis and biomechanics. Journal of Archaeological Science 44:30-42.

DOWNES, G. M.; HUDSON, I. L.; RAYMOND, C. A.; DEAN, G. H.; MICHELL, A. J.; SCHIMLECK, R.; EVANS, R.; MUNERI, A. 1997. Sampling plantation eucalypts for wood and fiber properties. Collingwood: CSIRO. Melbourne: CSRIO, 126 p.
ELAIEB, M.T.; KHOUAJA, A.; KHOUJA, M.L.; VALETTE, J.; VOLLE, G.; & CANDELIER, K. 2018. Comparative study of local tunisian woods properties and the respective qualities of their charcoals produced by a new industrial eco-friendly carbonization process. Waste and Biomass Valorization 9(7): 1199-1211.

FAO. 2019. FAOSTAT: Forestry Data. [online] <http://faostat3.fao.org/browse/F/FO/E>. [Accessed in: 03 July 2019].

FENGEL, D.; WEGENER, G. 1984. Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, 613, 1960-1982.

FIALHO, L.D.F.; CARNEIRO, A.D.C.O.; CARVALHO, A.M.M.L.; FIGUEIRÓ, C.G.; SILVA, C.M.S.D.; MAGALHÃES, M.A.; PERES, L.C. 2019. Bio-coal production with agroforestry biomasses in Brazil. Maderas-Cienc Tecnol 21(3): 357 - 366.

GOLDSCHMID, O. 1971. Ultraviolet spectra. Lignins: occurrence, formation, structure and reactions, 241-266.

GOMIDE, J. L.; DEMUNER, B. J. 1986. Determinação do teor de lignina em material lenhoso: método Klarson modificado. O Papel 47(8): 36–38.

GONÇALVES, B.; DUSTIN, T.; OLADIRAN, F.; BIJAY, T.; TOM, G. 2015. Influence of bark on the physical and thermal decomposition properties of short-rotation Eucalyptus. BioEnergy Research 8: 1414–1423.

GUO, X.; WANG, S.; WANG, K.; LIU, Q.; LUO, Z. 2010. Influence of extractives on mechanism of biomass pyrolysis. Journal of Fuel Chemistry and Technology 38(1): 42-46.

HAYKIRI-ACMA, H.; YAMAN, S.; KUCUKBAYRAK, S. 2010. Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Processing Technology 91(7): 759-764.

HEALEY, A. L.; LUPOI, J. S.; LEE, D. J.; SYKES, R. W.; GUENTHER, J. M.; TRAN, K.; DECKER, S. R.; SINGH, S.; SIMMONS, B. A.; HENRY, R. J. 2016. Effect of aging on lignin content, composition and enzymatic saccharification in Corymbia hybrids and parental taxa between years 9 and 12. Biomass and Bioenergy 93: 50–59.

HUANG, C., HAN, L., YANG, Z., & LIU, X. 2009. Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Management 29(6): 1793-1797.

LEE, D.J. 2007. Achievements in forest tree genetic improvement in Australia and New Zealand 2: Development of Corymbia species and hybrids for plantations in eastern Australia. Australian Forestry 70(1): 11-16.

LEE, D.J.; HUTH, J.R.; BRAWNER, J.; DICKINSON, G. 2009. Comparative performance of Corymbia hybrids and parental species in subtropical Queensland and implications for breeding and deployment. Silvae Genetica 58 (5-6): 202-212.

LIN, S.Y.; HIRATO, M.; HORIO, M. 1994. The characteristics of coal char gasification at around ash melting temperature. Energy & Fuels 8 (3): 598-606.

MOUTINHO, V.H.P.; TOMAZELLO FILHO, M.; BRITO, J.O.; BALLARIN, A.W.; ANDRADE, F. W. C. 2016. Influence of the wood physical properties on the charcoal physical and mechanical properties. Scientia Forestalis 44 (111): 557-561.

OLIVEIRA, A.C.; CARNEIRO, A.C.O.; VITAL, B.R.; ALMEIDA, W.; PEREIRA, B.L.C.; CARDOSO, M. T. 2010. Parâmetros de qualidade da madeira e do carvão vegetal de Eucalyptus pellita F. Muell. Scientia Forestalis 38(87): 431-439.

PEEL, M.C.; FINLAYSON, B.L.; MCMAHON, T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11:1633-1644.

PEREIRA, B.L.C.; CARNEIRO, A.C.O.; CARVALHO, A.M.M.L.; COLODETTE, J.L.; OLIVEIRA, A.C.; FONTES, M.P.F. 2013. Influence of chemical composition of eucalyptus wood on gravimetric yield and charcoal properties. BioResources 8: 4574-4592.

PROTÁSIO, T.P.; GOULART, S.L.; NEVES, T.A.; TRUGILHO, P.F.; RAMALHO, F.M.G.; QUEIROZ, L.M.R.S.B. 2014. Qualidade da madeira e do carvão vegetal oriundos de floresta plantada em Minas Gerais. Brazilian Journal of Forestry Research 34(78): 111–123.

PROTÁSIO, T.P.; COUTO, A.M.; TRUGILHO, P.F.; JUNIOR, J.B.G.; LIMA JUNIOR, P.H.; SILVA, M.M.O. 2015. Avaliação tecnológica do carvão vegetal da madeira de clones jovens de Eucalyptus grandis e Eucalyptus urophylla. Scientia Forestalis 43(108): 801-816.

PROTÁSIO, T. P., TRUGILHO, P.F., ARAÚJO, A.C.C., BASTOS, T.A., ROSADO, S.C.S., PINTO, J. F. N. 2017. Classification of Eucalyptus clones by the ratio syringyl/guaiacyl and growth characteristics for energy use. Scientia Forestalis 45(114): 327-341.

PROTÁSIO, T.P.; SCATOLINO, M.V.; ARAÚJO, A.C.C.; OLIVEIRA, A.F.C.F.; FIGUEIREDO, I.C.R.; ASSIS, M.R.; TRUGILHO, P.F. 2019. Assessing Proximate Composition, Extractive Concentration, and Lignin Quality to Determine Appropriate Parameters for Selection of Superior Eucalyptus Firewood. BioEnergy Research 1-16.

RAAD, T. J.; MELO, V. F. 2014. Mapeamento de ações institucionais para sustentabilidade da produção de ferro-gusa a partir de carvão vegetal. CGEE. Brasília.

REIS, C.A.F.; ASSIS, T.F.; SANTOS, A.M.; PALUDZYSYN, E.F. 2014. Corymbia torelliana: estado da arte de pesquisas no Brasil. Documentos-Embrapa Florestas, 50 p.

RONSSE, F. ; NACHENIUS, R. W.; PRINS, W. 2015. Recent Advances in Thermo-Chemical Conversion of Biomass, Elsevier, 293-324.

ROUSSET, P.; FIGUEIREDO, C.; DE SOUZA, M.; QUIRINO, W. 2011. Pressure effect on the quality of eucalyptus wood charcoal for the steel industry: A statistical analysis approach. Fuel Processing Technology 92(10): 1890-1897.

SANTOS, R.C.; CARNEIRO, A D.C.O.; CASTRO, A F.M.; CASTRO, R.V.O.; SOUZA, M.M.; CARDOSO, M.T. 2011. Correlações entre os parâmetros de qualidade da madeira e do carvão vegetal de clones de eucalipto. Scientia Forestalis 39(90): 221-230.

SILVA, F.T.M.; ATAÍDE, C.H. 2019. Valorization of Eucalyptus urograndis wood via carbonization: Product yields and characterization. Energy 172: 509-516.

SOARES, V.C.; BIANCHI, M.L.; TRUGILHO, P.F.; PEREIRA, A.J.; HÖFLER, J. 2014. Correlações entre as propriedades da madeira e do carvão vegetal de híbridos de eucalipto. Revista Árvore 38(3): 543-549.

TAPPI. 2001. T 204 om-88: solvent extractives of wood and pulp. TAPPI Standard Method. Atlanta, USA.

TRUGILHO, P. F.; SILVA, D. A. 2001. Influência da temperatura final de carbonização nas características físicas e químicas do carvão vegetal de jatobá (Himenea courbaril L.). Scientia Agraria 2(1-2): 45-53.

TRUGILHO, P. F. 2009. Densidade básica e estimativa de massa seca e de lignina na madeira em espécies de Eucalyptus. Ciência e Agrotecnologia 33(5): 1228-1239.

VALE, A.T.; COSTA, A.F.; GONÇALEZ, J.C.; NOGUEIRA, M. 2001. Relações entre a densidade básica da madeira, o rendimento e a qualidade do carvão vegetal de espécies do cerrado. Revista Árvore 25(89): 89–95.

VAN KREVELEN, D. W. 1993. Coal: typology, physics, chemistry, constitution. Elsevier, Amsterdam.

WANG, S.; DAI, G.; YANG, H.; LUO, Z. 2017. Lignocellulosic biomass pyrolysis mechanism: a state of the art review. Progress in Energy and Combustion Science, 62, 33-86.

ZANUNCIO, A. J. V.; CARVALHO, A. G.; TRUGILHO, P. F.; MONTEIRO, T. C. 2014a. Extractives and energetic properties of wood and charcoal. Revista Árvore 38(2): 369–374.

ZANUNCIO, A. J. V.; LIMA, J. T.; MONTEIRO, T. C.; TRUGILHO, P. F.; LIMA, F. S. 2014b. Outdoor drying of wood for charcoal production. Floresta e Ambiente 21(3): 401–408.

ZANUNCIO, A.J.V., CARVALHO, A.G., SILVA, L.F., LIMA, J.T., TRUGILHO, P.F., SILVA, J.R.M. 2015. Predicting moisture content from basic density and diameter during air drying of Eucalyptus and Corymbia logs. Maderas-Cienc Tecnol 17(2): 335-344.

Downloads

Published

2019-10-01

How to Cite

Assis Loureiro, B., Sacramento Vieira, T. A., Junqueira Costa, L., Barishinikov Silva, A., Reis de Assis, M., & Fernando Trugilho, P. (2019). Selection of superior clones of Corymbia hybrids based on wood and charcoal properties. Maderas. Ciencia Y Tecnología, 21(4), 619–630. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3766

Issue

Section

Article

Most read articles by the same author(s)