Enhancing mechanical and surface properties of eucalyptus wood


  • Anderson Pertuzzatti
  • Gianluca Tondi
  • Rodrigo Coldebella
  • Henrique W. Dalla Costa
  • Darci A. Gatto
  • André L. Missio


Density enhancement, mechanical resistance, post-treatment, springback effect, surface properties, synergic treatment, wettability


Eucalyptus is one of the most fast-growing trees. Therefore, in the last decades it has been extensively planted and harvested so that nowadays Eucalyptus is one of the most popular trees of the planet. There are many genres of this plant and they are often treated as a large bunch of the same timber characterized by moderate mechanical and surface properties which hinder their usage for any sight application (e.g. flooring, cladding, ceiling). In this study four species of Eucalyptus: E. grandis, E. dunnii, E. cloeziana and E. tereticornis were undergone to densification through hydro-thermo-mechanical treatment (HTM) first and then to oil heat-treatment (OHT) in order to improve their mechanical properties and hydrophobicity. It was observed that low density species (E. grandis) reaches higher compression degrees while heavier species (E. tereticornis) reach densities over 800 kg/m³; however, HTM decrease the variability of the properties. Treatments at higher temperature (160 °C) involves higher compression degree, lower set-recovery and higher surface hydrophobization, but also weaker mechanical properties. The hot oil post- treatment helps to contain the springback effect and to reduce the wettability of each specimen. Densified samples present similar surface hardness. The tailored application of the two treatments improves the properties of every Eucalyptus which can gain market also for nobler end-usages.


Download data is not yet available.


American Society for Testing and Materials. ASTM. 2004. D5536-94: Standard practice for sampling forest trees for determination of clear wood properties. West Conshohocken, PA, USA. https://doi.org/10.1520/D5536-94R04

Associação Brasileira de Normas Técnicas. ABNT. 1997. NBR 7190: Projeto de Estruturas de Madeira. São Paulo, SP, Brazil.

Alén, R.; Kotilainen, R.; Zaman, A. 2002. Thermochemical behavior of Norway spruce (Picea abies) at 180–225 °C. Wood Sci Technol 36(2): 163–171. https://doi.org/10.1007/s00226-001-0133-1

Amorim, M.R.S.; Ribeiro, P.G.; Martins, S.A.; Menezzi, C.H.S.; Souza, M.R.D. 2013. Surface wettability and roughness of 11 Amazonian tropical hardwoods. Floram Forest Ambient 20(1): 99–109. http://dx.doi.org/10.4322/floram.2012.069

Arruda, L.M.; Del Menezzi, C.H.S. 2016. Properties of a laminated wood composite produced with thermomechanically treated veneers. Adv Mater Sci Eng 2016: 1–9. https://doi.org/10.1155/2016/8458065

American Society for Testing and Materials. ASTM. 2000. ASTM D143-94: Standards methods of testing small clear specimens of timber. West Conshohocken, PA, USA. https://doi.org/10.1520/D0143-94

Bekhta, P.; Niemz, P.; Sedliacik, J. 2012. Effect of pre-pressing of veneer on the glueability and properties of veneer-based products. Eur J Wood Wood Prod 70(1-3): 99–106. https://doi.org/10.1007/s00107-010-0486-y

Brito, J.O.; Dias Júnior, A.F.; Lana, A.Q.; Andrade, C.R.; Bernardes, F.F. 2019. Biological resistance of heat-treated wood of Pinus caribaea and Eucalyptus saligna. Maderas-Cienc Tecnol 21(2): 223-230. http://dx.doi.org/10.4067/S0718-221X2019005000209

Christiansen, A.W. 1991. How overdrying wood reduces its bonding to phenol-formaldehyde adhesives: a critical review of the literature. Part II, Chemical reactions. Wood Fiber Sci 23(1): 69–84. https://wfs.swst.org/index.php/wfs/article/view/2105

Dalla Costa, H.W.; Coldebella, R.; Andrade, F.R.; Gentil, M.; Correa, R.; Darci A. Gatto, D.A.; Missio, A.L. 2020. Brittleness increase in Eucalyptus wood after thermal treatment. Int Wood Prod J 11(1): 38-42. https://doi.org/10.1080/20426445.2020.1719298

Dubey, M.K.; Pang, S.; Walker, J. 2012. Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat-treatment. Holzforschung 66(1): 49–57. https://doi.org/10.1515/HF.2011.117

Fang, C.H.; Mariotti, N.; Cloutier, A.; Koubaa, A.; Blanchet, P. 2012. Densification of wood veneers by compression combined with heat and steam. Eur J Wood Wood Prod 70(1-3): 155–163. https://doi.org/10.1007/s00107-011-0524-4

Ferreira, D.F. 2011. Sisvar: a computer statistical analysis system. Cienc Agrotec 35(6): 1039–1042. https://doi.org/10.1590/S1413-70542011000600001

Gabrielli, C.; Kamke, F. 2010. Phenol–formaldehyde impregnation of densified wood for improved dimensional stability. Wood Sci Technol 44(1): 95–104. https://doi.org/10.1007/s00226-009-0253-6

Gaff, M.; Babiak, M.; Vokatý, V.; Gašparík, M.; Ruman, D. 2017. Bending characteristics of hardwood lamellae in the elastic region. Compos Part B-Eng 116(1): 61–75. https://doi.org/10.1016/j.compositesb.2016.12.058

Gašparík, M.; Gaff, M.; Šafaříková, L.; Vallejo, C.R.; Svoboda, T. 2016. Impact Bending Strength and Brinell Hardness of Densified Hardwoods. BioResources 11(4): 8638–8652. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_4_8638_Gasparik_Impact_Bending_Strength_Brinell_Hardness

Gong, M.; Lamason, C.; Li, L. 2010. Interactive effect of surface densification and post-heat-treatment on aspen wood. J Mater Process Technol 210(2): 293–296. https://doi.org/10.1016/j.jmatprotec.2009.09.013

Laskowska, A. 2020. The influence of ultraviolet radiation on the colour of thermo-mechanically modified beech and oak wood. Maderas-Cienc Tecnol 22(1): 55-68. http://dx.doi.org/10.4067/S0718-221X2020005000106

Missio, A.L.; Cademartori, P.H.G.; Mattos, B.D.; Santini, E.J.; Haselein, C.R.; Gatto, D.A. 2016. Physical and Mechanical Properties of Fast-Growing Wood Subjected to Freeze-Heat Treatments. BioResources 11(4): 10378-10390. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_4_10378_Missio_Fast_Growing_Wood_Freeze_Heat

Navi, P.; Pizzi, A. 2015. Property changes in thermo-hydro-mechanical processing COST Action FP0904 2010-2014: Thermo-hydro-mechanical wood behavior and processing. Holzforschung 69(7): 863–873. https://doi.org/10.1515/hf-2014-0198

Pelit, H.; Budakçi, M.; Sönmez, A. 2018. Density and some mechanical properties of densified and heat post-treated Uludağ fir, linden and black poplar woods. Eur J Wood Wood Prod 76(1): 79–87. https://doi.org/10.1007/s00107-017-1182-y

Pelit, H.; Sönmez, A.; Budakçi, M. 2015. Effects of Thermomechanical Densification and Heat Treatment on Density and Brinell Hardness of Scots Pine (Pinus sylvestris L.) and Eastern Beech (Fagus orientalis L.). BioResources 10(2): 3097–3111. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_2_3097_Pelit_Thermomechanical_Densification_Heat_Treatment

Pertuzzatti, A.; Missio, A.L.; Cademartori, P.H.G.; Santini, E.J.; Haselein, C.R.; Berger, C.; Gatto, D.A.; Tondi, G. 2018. Effect of Process Parameters in the Thermomechanical Densification of Pinus elliottii and Eucalyptus grandis Fast-growing Wood. BioResources 13(1): 1576–1590. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_1_1576_Pertuzzatti_Process_Parameters_Thermomechanical_Pinus_Eucalyptus

Pertuzzatti, A.; Missio, A.L.; Conte, B.; Souza, S.C.; Santini, E.J.; Haselein, C.R. 2016. Physical properties of Pinus elliottii var. elliottii thermally treated wood under two different atmospheres. Braz J Wood Sci 7(1): 7–15. http://dx.doi.org/10.12953/2177-6830/rcm.v7n1p7-15

Sears C. 1900. Process of preparing wood matrices. US Patent No 646,547. Cleveland, Ohio, USA.

Sözbir, G.D.; Bektaş, İ.; Ak, A.K. 2019. Influence of combined heat treatment and densification on mechanical properties of poplar wood. Maderas-Cienc Tecnol 21(4): 481-492. http://dx.doi.org/10.4067/S0718-221X2019005000405

Ulker, O.; Imirzi, O.; Burdurlu, E. 2012. The effect of densification temperature on some physical and mechanical properties of scots pine (Pinus sylvestris L.). BioResources 7(4): 5581–5592. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_4_5581_Ulker_Densification_Temperature_Properties_Scots_Pine

Unsal, O.; Candan, Z.; Korkut, S. 2011. Wettability and roughness characteristics of modified wood boards using a hot-press. Ind Crops Prod 34(3): 1455–1457. https://doi.org/10.1016/j.indcrop.2011.04.024

Wålinder, M.E.P.; Gardnerb, D.J. 1999. Factors influencing contact angle measurements on wood particles by column wicking. J Adhes Sci Technol 13 (12): 1363–1374. https://doi.org/10.1163/156856199X00523

Welzbacher, C.R.; Wehsener, J.; Rapp, A.O.; Haller, P. 2008. Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale – Dimensional stability and durability aspects. Holz Roh Werkst 66: 39–49. https://doi.org/10.1007/s00107-007-0198-0

Wentzel, M.; Brischke, C.; Militz, H. 2019. Dynamic and static mechanical properties of Eucalyptus nitens thermally modified in an open and closed reactor system. Maderas-Cienc Tecnol 21(2): 141-152. http://dx.doi.org/10.4067/S0718-221X2019005000201

Wolcott, M.P.; Kamke, F.A.; Dillard, D.A. 1990. Fundamentals of flakeboard manufacture: viscoelastic behavior of the wood component. Wood Fiber Sci 22(4): 345–361. https://wfs.swst.org/index.php/wfs/article/view/2018




How to Cite

Pertuzzatti, A., Tondi, G., Coldebella, R., W. Dalla Costa, H., A. Gatto, D., & L. Missio, A. (2020). Enhancing mechanical and surface properties of eucalyptus wood. Maderas-Cienc Tecnol, 22(4), 467–476. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4141




Most read articles by the same author(s)