This is an outdated version published on 2021-01-01. Read the most recent version.

Thermal properties of Acacia mangium cross laminated timber and its gluelines bonded with two structural adhesives

Authors

  • Norwahyuni Mohd Yusof
  • Paridah Md Tahir
  • Lee Seng Hua
  • Fatimah Athiyah Sabaruddin
  • Redzuan Mohammad Suffian James
  • Mohd Asim Khan
  • Lee Ching Hao
  • Adlin Sabrina Muhammad Roseley

DOI:

https://doi.org/10.4067/s0718-221x2021000100402

Keywords:

Acacia mangium, dynamic mechanical analysis, one component polyurethane, phenol resorcinol formaldehyde, thermogravimetric analysis

Abstract

The properties of CLT can be affected by the type of adhesives used. The thermal properties of the adhesive that joins the timber together is essential to determine the thermal endurance of the CLT product. In this study, two types of adhesives were used to join the cross laminated timber (CLT) manufactured from Acacia mangium namely phenol resorcinol formaldehyde (PRF) and one component polyurethane (PUR). The thermal properties of the adhesives, A. mangium wood and the gluelines were determined via Thermogravimetric Analysis (TGA) and Dynamic Mechanical Analysis (DMA) tests. The TGA test showed that PRF adhesive had higher degradation temperature at 530 ˚C compared to PUR adhesive at 430 ˚C. Meanwhile, the PRF adhesive as a glueline in CLT also showed better thermal resistance where a higher amount of residue of 20,94 % was recorded at temperature up to 900 ˚C compared to PUR glueline with 18,26 % residue. The integrity of the CLT over temperature were determined via DMA test and the results showed that PRF adhesive as glueline had superior properties, indicating better interfacial bonding with the woods.

Downloads

Download data is not yet available.

References

Angelini, L.G.; Ceccarini, L; Nassi O Di Nasso, N; Bonari, E. 2009. Comparison of Arundo Donax L. and Miscanthus x Giganteus in a long-term field experiment in central Italy: analysis of productive characteristics and energy balance. Biomass Bioenerg 33(4): 635-643. https://doi.org/10.1016/j.biombioe.2008.10.005

Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M.R. 2016. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J Bionic Eng 13(3): 426–35. https://doi.org/10.1016/S1672-6529(16)60315-3

Asim, M.; Jawaid, M.; Nasir, M.; Saba, N. 2018. Effect of fiber loadings and treatment on dynamic mechanical, thermal and flammability properties of pineapple leaf fiber and kenaf phenolic composites. J Renew Mater 6(4): 383–93. https://doi.org/10.7569/JRM.2017.634162

Aydemir, D.; Civi, B.; Alsan, M.; Can, A.; Sivrikaya, H.; Gunduz, G.; Wang, A. 2016. Mechanical, morphological and thermal properties of nano-boron nitride treated wood materials. Maderas-Cienc Tecnol 18(1): 19-32. http://dx.doi.org/10.4067/S0718-221X2016005000003

Crespo, Y.A; Naranjo, R.A; Burgos, J.C.V.; Sanchez, C.G.; Sanchez, E.M. 2015. Thermogravimetric analysis of thermal and kinetic behavior of Acacia mangium wood. Wood Fiber Sci 47(4): 327-335. http://wfs.swst.org/index.php/wfs/article/view/2363

Chartoff, R.P.; Menczel, J.D.; Dillman, S.H. 2009. Dynamic Mechanical Analysis (DMA). In Thermal Analysis of Polymers: Fundamentals and Applications, Menzcel, J.D.; Bruce Prime, R. (Eds.). John Wiley and Sons, New Jersey, USA. pp. 387–495. https://doi.org/10.1002/9780470423837.ch5

Di Blasi, C. 2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34(1): 47-90. http://doi.org/10.1016/j.pecs.2006.12.001

Dieste, A.; Cabrera, M.N.; Clavijo, L.; Cassell, N. 2019. Analysis of wood products from an added value perspective: the Uruguayan forestry case. Maderas-Cienc Tecnol 21(3): 305 – 316. http://dx.doi.org/10.4067/S0718-221X2019005000303

Engineering Toolbox. 2004. Density of various wood species. Retrieved from https://www.engineeringtoolbox.com/wood-density-d_40.html

George, B.; Simon, C.; Properzi, M.; Pizzi, A.; Elbez, G. 2003. Comparative creep characteristics of structural glulam wood adhesives. Holz Roh Werkst 61(1): 79-80. https://doi.org/10.1007/s00107-002-0348-3

Hameed, N.; Sreekumar, P.A.; Francis, B.; Yang, W.; Thomas, S. 2007. Morphology, dynamic mechanical and thermal studies on poly (styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos Part A Appl Sci Manuf 38(12): 2422-2432. https://doi.org/10.1016/j.compositesa.2007.08.009

Jacob, M.; Francis, B.; Varughese, K.; Thomas, S. 2006. The effect of silane coupling agents on the viscoelastic properties of rubber biocomposites. Macromol Mater Eng 291(9): 1119-1126. https://doi.org/10.1002/mame.200600171

Jawaid, M.; Abdul Khalil, H.P.S.; Alattas, O. 2012. Woven hybrid biocomposites: dynamic mechanical and thermal properties. Compos Part A Appl Sci Manuf 43(2): 288–293. https://doi.org/10.1016/j.compositesa.2011.11.001

Jawaid, M.; Abdul Khalil, H.P.S. 2011. Effect of layering pattern on the dynamic mechanical properties and thermal degradation of oil palm-jute fibers reinforced epoxy hybrid composite. BioResources 6(3): 2309-2322. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_06_3_2309_Jawaid_A_Layering_Pattern_DMA_Epoxy_Hybrid_Composites

Johar, N.; Ahmad, I.; Dufresne, A. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37(1): 93–99. https://doi.org/10.1016/j.indcrop.2011.12.016

Joseph, S.; Appukuttan, S.P.; Kenny, J.M.; Puglia, D.; Thomas, S.; Joseph, K. 2010. Dynamic Mechanical Properties of oil palm microfibril-reinforced natural rubber composites. J Appl Polym Sci 117(3): 1298-1308. https://doi.org/10.1002/app.30960

Kasim, A.; Omar, W.S.A.W.; Razak, N.H.A.; Musa, N.L.W.; Halim, R.A.; Mohamed, S.R. 2014. Proceedings of the International Conference on Science, Technology and Social Sciences (ICSTSS) 2012. Springer Singapore, Singapore.

Lee, C.H.; Sapuan, S.M.; Hassan, M.R. 2018. Thermal analysis of kenaf fiber reinforced floreon biocomposites with magnesium hydroxide flame retardant filler. Polym Compos 39(3): 869-875. https://doi.org/10.1002/pc.24010

Lee, C.H.; Sapuan, S.M.; Hassan, M.R. 2017. Mechanical and thermal properties of kenaf fiber reinforced polypropylene/magnesium hydroxide composites. J Eng Fiber Fabr 12(2): 50-58. https://doi.org/10.1177%2F155892501701200206

Lee, S.H.; Teramoto, Y.; Shiraishi, N. 2002. Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. J Appl Polym Sci 83(7): 1482-1489. https://doi.org/10.1002/app.10039

Lim, S.C.; Gan, K.S.; Choo, K.T. 2003. The characteristics, properties and uses of plantation timbers; rubberwood and Acacia mangium. Timber Technology Bulletin 26: 1-10. https://info.frim.gov.my/infocenter/booksonline/ttb/TTBno26.pdf

Liu, J; Chen, R.Q; Xu, Y.Z.; Wang, C.P.; Chu, F.X. 2017. Resorcinol in high solid phenol−formaldehyde resins for foams production. J Appl Polym Sci 134(22): 44881. https://doi.org/10.1002/app.44881

Manya, J.J.; Velo, E.; Puigjaner, L. 2003. Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res 42(3): 434-441. https://doi.org/10.1021/ie020218p

Melo, J.D.; Radford, D.W. 2005. Time and temperature dependence of the viscoelastic properties of cfrp by dynamic mechanical analysis. Compos Struct 70(2): 240-253. https://doi.org/10.1016/j.compstruct.2004.08.025

Mészáros, E.; Várhegyi, G.; Jakab, E.; Marosvölgyi, B. 2004. Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energ Fuel 18(2): 497–507. https://doi.org/10.1021/ef034030+

Miranda, I.M.; Almeida, H.; Pereira, H. 2007. Influence of provenance, subspecies, and site on wood density in Eucalyptus globulus Labill. Wood Fiber Sci 33(1): 9–15. https://wfs.swst.org/index.php/wfs/article/view/66

Nadirah, W.O.; Jawaid, M.; Al Masri, A.A.; Abdul Khalil, H.P.S.; Suhaily, S.S.; Mohamed, A.R. 2012. Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications. J Polym Environ 20(2): 404-411. https://doi.org/10.1007/s10924-011-0380-7

Nordahlia, A.S.; Hamdan, H.; Anwar, U.M.K. 2013. Wood properties of selected plantation species: Khaya ivorensis (african mahogany), Azadirachta excelsa (sentang), Endospermum malaccense (sesendok) and Acacia mangium. Timber Technology Bulletin 51: 1-4. https://info.frim.gov.my/infocenter/booksonline/ttb/TTB51.pdf

Norwahyuni, M.Y.; Tahir, P.M.; Roseley, A.S.M.; Lee, S.H.; Halip, J.A.; James, R.M.S.; Ashaari, Z. 2019a. Bond integrity of cross laminated timber from Acacia mangium wood as affected by adhesive types, pressing pressures and loading direction. Int J Adhes Adhes 94: 24-28. https://doi.org/10.1016/j.ijadhadh.2019.05.010

Norwahyuni, M.Y.; Tahir, P.M.; Lee, S.H.; Khan, M.A.; James, R.M.S. 2019b. Mechanical and physical properties of Cross-Laminated Timber made from Acacia mangium wood as function of adhesive types. J Wood Sci 65(1): 20. https://doi.org/10.1186/s10086-019-1799-z

Nugroho, W.D.; Marsoem, S.N.; Yasue, K.; Fujiwara, T.; Nakajima, T.; Hayakawa, M.; Nakaba, S.; Yamagishi, Y.; Jin, H.; Kubo, T.; Funada, R. 2012. Radial variations in the anatomical characteristics and density of the wood of acacia mangium of five different provenances in Indonesia. J Wood Sci 58(3): 185-194. https://doi.org/10.1007/s10086-011-1236-4

Ornaghi, H.L.; Pistor, V.; Zattera, A.J. 2012. Effect of the epoxycyclohexyl polyhedral oligomeric silsesquioxane content on the dynamic fragility of an epoxy resin. J Non Cryst Solids 358(2): 427-432. https://doi.org/10.1016/j.jnoncrysol.2011.10.014

Pistor, V.; Ornaghi, F.G.; Ornaghi, H.L.; Zattera, A.J. 2012. Dynamic mechanical characterization of epoxy/epoxycyclohexyl–POSS nanocomposites. J Mater Sci Eng A 532: 339-345. https://doi.org/10.1016/j.msea.2011.10.100

Qazvini, N.T.; Mohammadi, N. 2005. Dynamic Mechanical Analysis of segmental relaxation in unsaturated polyester resin networks: effect of styrene content. Polymer 46(21): 9088-9096. https://doi.org/10.1016/j.polymer.2005.06.118

Ridzuan, M.J.M.; Majid, M.A.; Afendi, M.; Mazlee, M.N.; Gibson, A.G. 2016. Thermal behaviour and dynamic mechanical analysis of pennisetum purpureum/glass-reinforced epoxy hybrid composites. Compos Struct 152: 850-859. https://doi.org/10.1016/j.compstruct.2016.06.026

Richter, K.; Pizzi, A.; Despres. A. 2006. Thermal stability of structural one-component polyurethane adhesives for wood-structure-property relationship. J Appl Sci 102(6): 5698–5707. https://doi.org/10.1002/app.25084

Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah. M. T. 2016a. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Builds Mater 106(1): 149-159. https://doi.org/10.1016/j.conbuildmat.2015.12.075

Saba, N.; Paridah, M.T.; Abdan, K.; Ibrahim, N.A. 2016b. Dynamic Mechanical Properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Constr Builds Mater 124: 133-138. https://doi.org/10.1016/j.conbuildmat.2016.07.059

Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. 2015. Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymer 7(6): 1106-1124. https://doi.org/10.3390/polym7061106

Shukla, S.R. 2019. Evaluation of dimensional stability, surface roughness, colour, flexural properties and decay resistance of thermally modified Acacia auriculiformis. Maderas-Cienc Tecnol 21(4): 433-446. http://dx.doi.org/10.4067/S0718-221X2019005000401

Sutton, A.; Black, D.; Walker, P. 2011. Cross-Laminated Timber: an introduction to low-impact building materials. IHS BRE Press, Watford, UK.

Van De Kuilen, J.W.G.; Ceccotti, A.; Xia, Z.; He, M. 2011. Very tall wooden buildings with cross laminated timber selection and/or peer-review under responsibility. Procedia Eng 14: 1621-1628. https://doi.org/10.1016/j.proeng.2011.07.204

Wang, Z.; Zhou, J.; Dong, W.; Yao, Y.; Gong, M. 2018. Influence of technical characteristics on the rolling shear properties of cross laminated timber by modified planar shear tests. Maderas-Cienc Tecnol 20(3): 469-478. http://dx.doi.org/10.4067/S0718-221X2018005031601

Downloads

Published

2021-01-01

Versions

How to Cite

Mohd Yusof, N., Md Tahir, P., Seng Hua, L., Athiyah Sabaruddin, F., Suffian James, R. M., Asim Khan, M., Ching Hao, L., & Muhammad Roseley, A. S. (2021). Thermal properties of Acacia mangium cross laminated timber and its gluelines bonded with two structural adhesives. Maderas. Ciencia Y Tecnología, 23. https://doi.org/10.4067/s0718-221x2021000100402

Issue

Section

Article

Most read articles by the same author(s)