Viability of wood decaying fungal mycelium after microwave radiation of bamboo culm
DOI:
https://doi.org/10.4067/s0718-221x2021000100404Keywords:
Bamboo culm wood, Bambusa vulgaris, decay, fungi, microwave treatment, viabilityAbstract
The present study was carried out to evaluate the effects of microwave (MW) radiation on viability of wood decaying fungi. The white rot (Trametes versicolor) and brown rot (Rhodonia placenta) fungi were grown on bamboo culm-samples. The mycelium growths were observed in controlled as well as microwave treated samples. The results showed that the viability of fungi decreased according to the applied MW time. This study proved the ability of the microwaves and exposure time MW3 (180 seconds) to kill the fungal colonies and do not allow for the growth of fungal spores, means the rate of growth of fungal colonies is inversely proportional to time of microwave exposure.
Downloads
References
Al-Mayah, A.A.; Ali, E.T. 2010. Mobile microwave effect on bacterial antibiotic sensitivity. Bas J Vet Res 10(2): 89-103. https://www.iasj.net/iasj?func=fulltext&aId=55052.
Baumann-Ebert, S.; Körner, J. 2013. Integrierter Holzschutz unter Einsatz des Mikrowellenverfahrens am Beispiel einer klassischen Stadtvilla mit Befall durch den Echten Hausschwamm. EIPOS, Fraunhofer IRB Verlag Stuttgart, 28-57.
Ahmed, L.T.; Majeed, A.D.; Salhi S.A. 2015. The effect of mobile waves on the growth of pathogenic Fungi. Int J Curr Microbiol App Sci 4(11): 838-842. https://www.ijcmas.com/vol-4-11/Luma%20T.%20Ahmed,%20et%20al.pdf.
Chipley, J.R. 1980. Effects of microwave irradiation on microorganisms. Adv Appl Microbiol 26: 129-145. https://doi.org/10.1016/S0065-2164(08)70333-2.
DIN. 2012. DIN 68800-4:2012-02: Wood preservation - Part 4: Curative treatment of wood destroying fungi and insects and refurbishment. German standard, Beuth Verlag GmbH. https://dx.doi.org/10.31030/1857875.
Gorny R.L.; Mainelis G.; Wlazlo, A.; Niesler A.; Lis, D.O.; Marzec, S.; Siwinska, E.; Ludzen-Izbinska, B.; Harkawy, A.; Kasznia-Kocot, J. 2007. Viability of fungal spores after microwave radiation of building materials. Ann Agric Environ med 14(2): 313-324. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-article-0e631aa2-0e2b-4bb4-9e90-37930a3ae8d2.
Highley, T.L.; Clausen, C.A.; Croan, S.C.; Green, F. III; Illman, B.L.; Micales, J.A. 1994. Research on biodeterioration of wood, 1987–1992. I. Decay mechanisms and biocontrol. Research Paper FPL–RP–529. Department of Agriculture, Forest Service, Forest Products Laboratory Madison, WI, USA. https://www.osti.gov/biblio/6776653.
IBM. 2007. SPSS Modeler 16.0. SPSS Inc., 233 South Wacker Drive, 11th Floor, Chicago, IL, USA. https://www.ibm.com/support/pages/downloading-ibm-spss-modeler-160.
Indian Standard. 2008. IS 4873: Methods of laboratory testing of wood preservatives against fungi. Bureau of Indian Standards. Manak Bhawan, 9 Bahadur Shah Zafar Marg New Delhi 110002, India.
Kuchma, T.N.; Alipov, E.D.; Samoilenko, L.L.; Lystsov, V.N. 1992. Comparative analysis of mechanisms of the modification of microorganism viability under the effect of UHF heating and hyperthermia. Radiobiologiia. 32(6): 881-886. https://pubmed.ncbi.nlm.nih.gov/1494658/.
Liese, W.; Kumar, S. 2003. Bamboo preservation compendium. Centre for Indian Bamboo Resource and Technology INBR, India. 231 p.
Morris, P.I.; Winandy, J.E. 2002. Limiting Conditions for Decay in Wood Systems. In Thirty-third Annual Meeting of the International Research Group on Wood Preservation, 2002 May 12-17, Cardiff, South Wales, UK. IRG/WP 02-10421:1-11. IRG Secretariat, Stockholm, Sweden.
Pasanen, A.L.; Juutinen, T.; Jantunen, M.J.; Kalliokoski, P. 1992. Occurrence and moisture requirements of microbial growth in building materials. Int Biodeter Biodegr 30(4): 273-283. https://doi.org/10.1016/0964-8305(92)90033-K.
Plarre, R.; Steinbach, S.; Roland, U.; Trommler, U.; Hoyer, C. 2013. Thermische Bekämpfungsverfahren im Holzschutz mit elektromagnetischen Wellen. EIPOS, Fraunhofer IRB Verlag Stuttgart, 107-115.
Poonia, P.K.; Devi, L.A.; Tripathi, S. 2015. The efficacy of methanolic extract of Eucalyptus tereticornis sm. Leaves against wood decaying fungi. Indian Forester 141(8): 869-872. https://doi.org/10.36808/if/2015/v141i8/77004.
Poonia, P.K.; Tripathi, S. 2016. Moisture related properties of Eucalyptus tereticornis after thermal modification. J Trop For Sci 28(2): 153-158. https://www.jstor.org/stable/43799218.
Poonia, P.K.; Tripathi, S. 2018. Effect of microwave heating on pH and termite resistance of Pinus roxburghii wood. Maderas-Cienc Tecnol 20(3): 499 – 504. http://dx.doi.org/10.4067/S0718-221X2018005031901.
Schmidt, O. 2006. Wood and tree fungi. Biology, damage, protection, and use. Springer-Verlag Berlin Heidelberg. 336 pp. https://doi.org/10.1007/3-540-32139-X.
Schmidt, O.; Wei, D.S.; Liese, W.; Wollenberg, E. 2011. Fungal degradation of bamboo samples. Holzforschung 65(6): 883-888. https://doi.org/10.1515/HF.2011.084.
Stienen, T.; Schmidt, O.; Huckfeldt, T. 2014.Wood decay by indoor basidiomycetes at different moisture and temperature. Holzforschung 68(1): 9-15. https://doi.org/10.1515/hf-2013-0065.
Tripathi, S.; Rawat, K.; Dhyani, S.; Pant, H. 2009. Potential of Lantana camara Linn. weed against wood destroying fungi. Indian Forester 135(3): 403-411. http://www.indianforester.co.in/index.php/indianforester/article/view/361.
Downloads
Published
Versions
- 2020-11-15 (3)
- 2020-10-27 (2)
- 2021-01-01 (1)
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.