Nanocellulose-reinforced phenol-formaldehyde resin for plywood panel production
DOI:
https://doi.org/10.4067/s0718-221x2021000100405Keywords:
Glue line shear test, mechanical properties, nanotechnology, nanofibrillated cellulose, plywoodAbstract
The search for new technologies to improve adhesives and the properties of reconstituted wood panels is constant, and nanotechnology is a tool for this purpose. The aim of this study is investigating the effect of adding nanocellulose in the formulation of the adhesive phenol-formaldehyde on the physico-mechanical properties of Pinus taeda plywood panels. Three ratios of nanofibrillated cellulose (NFC) were added to the adhesive formulation used to produce plywood panels: 0,026 %, 0,038 % or 0,064 %. The panels were tested according to the European standards; apparent density, resistance to parallel and perpendicular flexure and glue line shear strength were determined after 6 hours of boiling and after the boiling cycle for the 1st glue line (face) and 2nd line (core). The use of NFC in the adhesive caused an increase of viscosity and reduction of the gel time of the adhesive. The apparent density of the panels was not influenced by the addition of NFC, but the properties of parallel bending, perpendicular flexing and glue line shear were sensitive to the addition of NFC. The NR2 treatment (0,038 % NFC) presented the best results in the mechanical tests.
Downloads
References
ASTM International. 2018. ASTM D1200-18: Standard Test Method for Viscosity by Ford Viscosity Cup. ASTM International, West Conshohocken, PA. http://www.astm.org/cgi-bin/resolver.cgi?D1200-10(2018).
ASTM International. 1999. ASTM D2471-99: Standard Test Method for Gel Time and Peak Exothermic Temperature of Reacting Thermosetting Resins (Withdrawn 2008). ASTM International, West Conshohocken, PA. http://www.astm.org/cgi-bin/resolver.cgi?D2471-99.
ASTM International. 2015. ASTM. E70-07: Standard test method for pH of aqueous solutions with the glass electrode. ASTM International, West Conshohocken, PA. http://www.astm.org/cgi-bin/resolver.cgi?E70-19.
ABIMCI - Associação Brasileira da Indústria de Madeira Processada Mecanicamente. 2017. Painéis de compensado de pinus, Catálogo Técnico. < http://www.abimci.com.br/wp-content/uploads/2014/02/Catalogo_Tecnico_Compensado_Pinus.pdf> (Acessed 06 Mar. 2019).
Buligon, E.A. 2015. Physical and mechanical properties of laminated veneer lumber reinforced Ci Fl 25(3): 731-741. http://www.bioline.org.br/abstract?cf15068.
Candan, Z.; Akulut, T. 2015. Physical and mechanical properties of nanoreinforced particleboard composites. Maderas-Cienc Tecnol 17(2): 319-334. http://dx.doi.org/10.4067/S0718-221X2015005000030.
Carvalho, M.Z. 2016. Multivariate approach to the behavior of physical-chemical properties and characterization of natural adhesives based on tannins. PhD Thesis, Federal University of Lavras, Lavras, Brazil.
Cui, J.; Lu, X.; Zhou, X.; Chrusciel, L.; Deng, Y.; Zhou, H.; Zhu, S.; Brosse, N. 2014. Enhancement of mechanical strength of particleboard using environmentally friendly pine (Pinus pinaster L.) tannin adhesives with cellulose nanofibers. Ann Forest Sci 72(1): 27-32. https://doi.org/10.1007/s13595-014-0392-2.
Cunha, R.C.B. 2016. Implementation of a method for measuring Gel Time of formaldehyde-based resins. Master Thesis, Higher Institute of Engineering of Porto, Porto, Portugal.
Damásio, R.A.P.; Carvalho, F.J.B.; Carneiro, A.C.O.; Ferreira, J.C.; Colodette, J.L. 2017. Effect of CNC interaction with urea-formaldehyde adhesive in bonded joints of Eucalyptus sp. Sci For 45(113): 169-176. http://www.ipef.br/publicacoes/scientia/.
Din, Z-U.; Xiong, H.; Wang, Z.; Chen, L.; Ullah, I.; Fei, P.; Ahmad, N. 2018. Effects of different emulsifiers on the bonding performance, freeze-thaw stability and retrogradation behavior of the resulting high amylose starch-based wood adhesive. Colloids Surf A Physicochem Eng Asp 538(5): 192-201. https://doi.org/10.1016/j.colsurfa.2017.11.002.
Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; et al. 2010. Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1): 1-33. https://doi.org/10.1007/s10853-009-3874-0.
European Committee for Standardization. 1993a. EN 310-93: Determination of modulus of elasticity and modulus of rupture in static bending. ECS, Brussels. https://standards.cen.eu/
European Comittee for Standardization. 1993b. EN 314-2-93: Plywood. Bonding quality. Requirements. ECS, Brussels. https://standards.cen.eu/.
European Comittee for Standardization. 1993c. EN 323-93. Determination of density. ECS, Brussels. https://standards.cen.eu/.
Ferreira, J.C. 2017. Synthesis of urea-formaldehyde adhesives with the addition of kraft lignin and nanocrystalline cellulose. PhD Thesis, Federal University of Viçosa, Viçosa, Brazil. https://www.locus.ufv.br/bitstream/handle/123456789/10010/texto%20completo.pdf?sequence=3&isAllowed=y.
Fratzl, P.; Weinkamer, R. 2007. Nature’s hierarchical materials. Prog Mater Sci 52(8): 1263-1334. https://doi.org/10.1016/j.pmatsci.2007.06.001.
Gindl-Altmutter, W.; Veigel, S. 2014. Nanocellulose-modified Wood Adhesives. In: Handbook of Green Materials. Oksman, k.; Mathew, A.P.; Bismarck, A.; Rojas, O.; Sain, M. (Eds.). World Scientific Publishing Co Pte Ltd. Singapure. 17: 253-264.
Gonçalvez, F.G.; Lelis, R.C.C. 2009. Properties of two synthetic resins after addition of modified tannin. Floram 16(2): 01-07. https://www.floram.org/article/588e221ce710ab87018b4664.
International Organization for Standardization – ISO. 2017. ISO/TS 20477:2017: Nanotechnologies -- Standard terms and their definition for cellulose nanomaterial. https://www.iso.org/standard/68153.html.
Iwakiri, S.; Matos, J.L.M.; Ferreira, E.S.; Prata, J.G.; Trianoski, R. 2012. Produção de painéis compensados estruturais com diferentes composições de lâminas de Eucalyptus saligna e Pinus caribea. Rev Arvore 36(3): 596-576. https://doi.org/10.1590/S0100-67622012000300019.
Iwakiri, S.; Trianoski, R.; Vieira, H.C.; Andrade, R.; Rocha, T.M.S.; Ferreira, V.R.S. 2018. Viability of the use of wood of Cupressus torulosa for plywood production. Sci For 46(120): 638-645. https://www.ipef.br/publicacoes/scientia/nr120/cap12.pdf.
Lengowski, E.C.; Bonfatti Júnior, E.A.; Kumode, M.M.N.; Carneiro, M.E.; Satyanarayana, K.G. 2019. Nanocellulose-Reinforced Adhesives for Wood-Based Panels. In Sustainable Polymer Composites and Nanocomposites. Thomas, S.I.; Kumar, R.; Mishra, A.M.A. (Eds:). 1001-1025. Springer International Publishing. https://www.springerprofessional.de/en/nanocellulose-reinforced-adhesives-for-wood-based-panels/16438260.
Liu, Z.; Zhang, Y.; Wang, X.; Rodrigue, D. 2015. Reinforcement of lignin-based phenol-formaldehyde adhesive with nano-crystalline cellulose (NCC): curing behavior and bonding property of plywood. Mater Sci Appl 6: 567-575. https://www.scirp.org/html/12-7701515_57456.htm.
Mahrdt, E.; Pinkl, S.; Schmidberger, C.; van Herwijnen, H.W.G.; Veigel, S.; Gindl-Atmutter, W. 2016. Effect of addition of microfibrillated cellulose to urea formaldehyde on selected adhesive characteristics and distribution in particle board. Cellulose 23(1): 571-580. https://doi.org/10.1007/s10570-015-0818-5.
Maloney, T.M. 1993. Modern particleboard & dry-process fiberboard manufacturing, 2nd ed. Miller Freeman, San Francisco. USA.
Mondragon, G.; Peña-Rodriguez, C.; Gonzáles, A.; Eceiza, A.; Arbelaiz, A. 2015. Bionanocomposites based on gelatin matrix and nanocellulose. Eur Polym J 62: 1-9. https://doi.org/10.1016/j.eurpolymj.2014.11.003.
Peschel, P.; Hornhardy, E.; Nennewitz, I.; Nutsch, W.; Schulzig, S.; Seifert, G.; Strechel, T. 2016. Tabellenbuch Holztechnik. Europa-Lehrmittel Nourney, Vollmer GmbH & Co. Haan-Gruiten, Germany. https://www.europa-lehrmittel.de/downloads-leseproben/41814-9/3027.pdf.
Rojas, J.; Bedoya, M.; Ciro, Y. 2015. Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. In Cellulose - Fundamental Aspects and Current Trends. Poletto, M.; Ornaghi, H.L. (Eds.). InTech Publisher, Rijeka. Chapter. 8: 193-228. https://doi.org/10.5772/61334.
Ross, R. J. 2010. Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190. 509 p. https://doi.org/10.2737/FPL-GTR-190.
Samyn, P.; Barhoum, A.; Öhlund, T.; Dufresne, A. 2018. Review: nanoparticles and nanostructured materials in papermaking. J Mat Sci 53(1): 146-184. https://doi.org/10.1007/s10853-017-1525-4.
Sehaqui, H.; Allais, M.; Zhou, Q.; Berglund, L.A. 2011. Wood cellulose biocomposites with fibrous structures at micro-and nanoscale. Compos Sci Technol l71(3): 382-387. https://doi.org/10.1016/j.compscitech.2010.12.007.
Song, J.; Chen, C.; Zhu, S.; Zhu, M.; Daí, J.; Ray, U.; Li, Y.; Kuang, Y.; et al. 2018. Processing bulk natural wood into a high-performance structural material. Nature 554 (7691): 224-228. https://doi.org/10.1038/nature25476.
Statgraphics. 2019. Statgraphics Technologies, Inc. https://www.statgraphics.com/.
Torquato, S. 2002. Random Heterogeneous Materials. Microstructure and Macroscopic Properties. Springer, Berlin, Germany. https://doi.org/10.1007/978-1-4757-6355-3.
Yuce, B.; Mastrocinque, E.; Packianather, M.S.; Pham, D.; Lambiase, A.; Fruggiero, F. 2014. Neural network design and feature selection using principal component analysis and Taguchi method for identifying wood veneer defects. Prod Manuf Res 2(1): 291-308. http://dx.doi.org/10.1080/21693277.2014.892442.
Zhang, H.; Zhang, J.; Shong. S.; Wu, G.; Pu, J. 2011. Modified nanocrystalline cellulose from two kinds of modifiers used for improving formaldehyde emission and bonding strength of urea-formaldehyde resin adhesive. BioResources 6(4): 4430-4438. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_06_4_4430_Zhang_ZSWP_Mod_Nanocrystalline_Cellulose_CH2O_UF_Adhesive.
Downloads
Published
Versions
- 2020-11-15 (2)
- 2021-01-01 (1)