Evaluación de la eficiencia energética de un proceso continuo de tratamiento de residuos agroforestales mediante carbonización hidrotérmica

Authors

  • Fidel Vallejo
  • Luis A. Díaz-Robles
  • Pablo González
  • Jorge Poblete

Keywords:

Biomasas residuales, carbonización hidrotérmica, economía circular, eficiencia energética, industria maderera, Circular economy, energetic efficiency, forestry industry, hydrothermal carbonization, waste biomass

Abstract

Among the processes available to treat waste biomass, the thermal conversion with water in subcritical conditions, called Hydrothermal Carbonization, is being studied in deep the last years. The Hydrothermal Carbonization needs lower temperatures than other thermal processes, and a solid with high energy density and hydrophobic properties are obtained. This work presents the modeling and simulation of continuous operation of the Hydrothermal Carbonization process for two residual biomasses: Pinus radiata sawdust from the wood industry and rapeseeds (Brassica napus) as industrial waste. The analysis was performed evaluating the whole process, from mixing the raw biomass with water and the reaction until obtaining the final pellet. All unit operations were modeled with phenomenological equations. The Higher Heating Value and the Mass Yield of the reaction were estimated by Multiple Linear Regression equations, using as an explanatory variable the Polarity Index, the Reactivity Index, the Severity Factor, and the Biomass: Water Ratio. The best model had an adjusted determination coefficient (R2a) of 0,90. Finally, the process presented an energy efficiency greater than 72% for sawdust and 77 % for rapeseed. Therefore, Hydrothermal Carbonization must be considered as an alternative to valorize agroforestry waste biomass to an industrial scale.

Downloads

Download data is not yet available.

References

Basso, D.; Weiss-Hortala, E.; Patuzzi, F.; Baratieri, M.; Fiori, L. 2018. In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization. Energies 11(6): 1379. https://doi.org/10.3390/en11061379

Bonechi, C.; Consumi, M.; Donati, A.; Leone, G.; Magnani, A.; Tamasi, G.; Rossi, C. 2017. Biomass: An Overview. In Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen. Elsevier. https://doi.org/10.1016/B978-0-08-101031-0.00001-6

Belkacemi, K.; Abatzoglou, N.; Overend, R.P.; Chornet, E. 1991. Phenomenological Kinetics of Complex Systems: Mechanistic Considerations in the Solubilization of Hemicelluloses following Aqueous/Steam Treatments. Ind Eng Chem Res 30(17): 2416–2425. https://doi.org/10.1021/ie00059a009

Genco, F; Genco, G. 2019. Selection of Energy Matrix Sources in Chile Using a Fuzzy Logic Decision Approach. Energy Syst https://doi.org/10.1007/s12667-019-00340-4

Heidari, M.; Dutta, A.; Acharya, B.; Mahmud, S. 2019. A Review of the Current Knowledge and Challenges of Hydrothermal Carbonization for Biomass Conversion. J Energy Inst 92(6): 1779-1799. https://doi.org/10.1016/j.joei.2018.12.003

Hoekman, S.K.; Broch, A.; Robbins, C.; Purcell, R.; Zielinska, B.; Felix, L.; Irvin, J. 2014. Process Development Unit (PDU) for Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass. Waste Biomass Valor 5(4): 669–678. https://doi.org/10.1007/s12649-013-9277-0

Jain, A.; Balasubramanian, R.; Srinivasan, M.P. 2016. Hydrothermal Conversion of Biomass Waste to Activated Carbon with High Porosity: A Review. Chem Eng J 283: 789–805. https://doi.org/10.1016/j.cej.2015.08.014

Kruse, A; Dahmen, N. 2017. Hydrothermal Biomass Conversion: Quo Vadis? J Supercrit Fluids 134: 114-123. https://doi.org/10.1016/j.supflu.2017.12.035

Kruse, A.; Funke, A.; Titirici, M.M. 2013. Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17(3): 515–521. https://doi.org/10.1016/j.cbpa.2013.05.004

Krylova, A.Y.; Zaitchenko, V.M. 2018. Hydrothermal Carbonization of Biomass: A Review. Solid Fuel Chem 52(2): 91–103. https://doi.org/10.3103/S0361521918020076

Liu, Y: Yao, S.; Wang, Y.; Lu, H.; Brar, S.; Yang, S. 2017. Bio- and Hydrochars from Rice Straw and Pig Manure: Inter-Comparison. Bioresour Technol 235: 332–37. https://doi.org/10.1016/j.biortech.2017.03.103

Leger, S.; Chornet, E.; Overend, R.P. 1987. Characterization and quantification of changes occurring in the low-severity dewatering of peat. Int J Coal Geol 8(1–2): 135–146. https://doi.org/10.1016/0166-5162(87)90028-0

Li, L.; Flora, J.R.V.; Caicedo, J.M.; Berge, N.D. 2015. Investigating the role of feedstock properties and process conditions on products formed during the hydrothermal carbonization of organics using regression techniques. Bioresour Technol 187: 263–274. https://doi.org/10.1016/j.biortech.2015.03.054

Li, L.; Wang, Y.; Xu, J.; Flora, J.R.V.; Hoque, S.; Berge, N.D. 2018. Quantifying the sensitivity of feedstock properties and process conditions on hydrochar yield, carbon content, and energy content. Bioresour Technol 262: 284–293. https://doi.org/10.1016/j.biortech.2018.04.066

Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.M.; Fühner, C.; Bens, O.; Kern, J.; Emmerich, K.H. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1): 71–106. https://doi.org/10.4155/bfs.10.81

Lucian, M.; Fiori, L. 2017. Hydrothermal carbonization of waste biomass: Process design, modeling, energy efficiency and cost analysis. Energies 10(2): 211. https://doi.org/10.3390/en10020211

Lynam, J.G.; Toufiq Reza, M.; Yan, W.; Vásquez, V.R.; Coronella, C.J. 2015. Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conv Bioref 5: 173–181. https://doi.org/10.1007/s13399-014-0137-3

McKendry, P. 2002a. Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1): 37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

McKendry, P. 2002b. Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1): 47–54. https://doi.org/10.1016/S0960-8524(01)00119-5

Oliveira, I; Blöhse, D.; Ramke, H.-G. 2013. Hydrothermal Carbonization of Agricultural Residues. Bioresour Technol 142: 138–46. https://doi.org/10.1016/j.biortech.2013.04.125

Reza, M.T.; Yan, W.; Uddin, M.H.; Lynam, J.G.; Hoekman, S.K.; Coronella, C.J.; Vásquez, V.R. 2013. Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour Technol 139: 161–169. https://doi.org/10.1016/j.biortech.2013.04.028

Román, S.; Libra, J.; Berge, N.; Sabio, E.; Ro, K.; Li, L.; Ledesma, B.; Álvarez, A.; Bae, S. 2018. Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review. Energies 11(1): 216. https://doi.org/10.3390/en11010216

Rutherford, D.W.; Chiou, C.T.; Klle, D.E. 1992. Influence of soil organic matter composition on the partition of organic compounds. Environ Sci Technol 26(2): 336–340. https://doi.org/10.1021/es00026a014

Safari, F.; Javani, N.; Yumurtaci, Z. 2018. Hydrogen Production via Supercritical Water Gasification of Almond Shell over Algal and Agricultural Hydrochars as Catalysts. Int J Hydrog Energy 43(2) : 1071-1080. https://doi.org/10.1016/j.ijhydene.2017.05.102

Saqib, N.; Sharma, H.; Baroutian, S.; Dubey, B.; Sarmah, A.. 2019. Valorisation of Food Waste via Hydrothermal Carbonisation and Techno-Economic Feasibility Assessment. Sci Total Environ 690: 261–76. https://doi.org/10.1016/j.scitotenv.2019.06.484

Shirai, M.; Osada, M.; Yamaguchi, A. ; Hiyoshi, N. ; Sato, O. 2015. Utilization of Supercritical Fluid for Catalytic Thermochemical Conversions of Woody-Biomass Related

Compounds. In Recent Advances in Thermo-Chemical Conversion of Biomass 437-453. Elsevier. https://doi.org/10.1016/B978-0-444-63289-0.00015-6

Simsek, Y.; Lorca, A.; Urmee, T.; Bahri, P.; Escobar, R. 2019. Review and Assessment of Energy Policy Developments in Chile. Energy Policy 127 :87-101. https://doi.org/10.1016/j.enpol.2018.11.058

Smith, A.; Surjit Singh, M.; Ross, A.. 2016. Fate of Inorganic Material during Hydrothermal Carbonisation of Biomass: Influence of Feedstock on Combustion Behaviour of Hydrochar. Fuel 169: 135–45. https://doi.org/10.1016/j.fuel.2015.12.006

Soto, G.; Núñez. M. 2008. Fabricacion de Pellets de Carbonilla, Usando Aserrin de Pinus radiata (D. Don), Como Material Aglomerante. Maderas-Cienc Tecnol 10: 129–37. http://dx.doi.org/10.4067/S0718-221X2008000200005

Stemann, J.; Ziegler, F. 2011. Assessment of the Energetic Efficiency of a Continuously Operating Plant for Hydrothermal Carbonisation of Biomass. In World Renewable Energy Congress 125-132. Sweden. http://doi.org/10.3384/ecp11057125

Stemann, J.; Erlach, B.; Ziegler, F. 2013a. Hydrothermal Carbonisation of Empty Palm Oil Fruit Bunches: Laboratory Trials, Plant Simulation, Carbon Avoidance, and Economic Feasibility. Waste Biomass Valor 4(3): 441–454. https://doi.org/10.1007/s12649-012-9190-y

Stemann, J.; Putschew, A.; Ziegler, F. 2013b. Hydrothermal carbonization: Process water characterization and effects of water recirculation. Bioresour Technol 143: 139–146. https://doi.org/10.1016/j.biortech.2013.05.098

Tekin, K.; Karagöz, S.; Bektaş, S. 2014. A Review of Hydrothermal Biomass Processing. Renew Sust Energ Rev 40: 673–87. https://doi.org/10.1016/j.rser.2014.07.216

Towler, G.; Sinnott, R. 2013. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Butterworth-Heinemann. Elsevier.

Vallejo, F.; Diaz-Robles, L.A.; Cubillos, F.; Vega, R.; Pino-Cortés, E.; Carrasco, S.; Gomez, J. 2019. Performance Evaluation of Biomass Blends with Additives Treated by Hydrothermal Carbonization. Chem Eng Trans 76: 1459-1464. https://doi.org/10.3303/CET1976244

Vallejo, F.; Diaz-Robles, L.A.; Vega, R.; Cubillos, F. 2020a. A Novel Approach for Prediction of Mass Yield and Higher Calorific Value of Hydrothermal Carbonization by a Robust Multilinear Model and Regression Trees. J Energy Inst 93: 1755-1762. https://doi.org/10.1016/j.joei.2020.03.006

Vallejo, F.; Diaz-Robles, L.A.; Poblete, J.; Cubillos, F. 2020b. Experimental Study and Validation of a Kinetic Scheme for Hydrothermal Carbonization Reactions. Biofuels https://doi.org/10.1080/17597269.2020.1759179

Yan, W.; Perez, S.; Sheng, K. 2017. Upgrading Fuel Quality of Moso Bamboo via Low Temperature Thermochemical Treatments: Dry Torrefaction and Hydrothermal Carbonization. Fuel 196: 473–80. https://doi.org/10.1016/j.fuel.2017.02.015

Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. 2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew Sust Energ Rev 90: 223–247. https://doi.org/10.1016/j.rser.2018.03.071

Zhang, B.; Heidari, M.; Regmi, B.; Salaudeen, S.; Arku, P.; Thimmannagari, M.; Dutta, A. 2018. Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. Energies 11(8): 2022–2035. https://doi.org/10.3390/en11082022

Zhang, S.; Zhu, X.; Zhou, S.; Shang, H.; Luo, J.; Tsang, D. 2019. Hydrothermal Carbonization for Hydrochar Production and Its Application. In Biochar from Biomass and Waste 275-294. Elsevier. https://doi.org/10.1016/B978-0-12-811729-3.00015-7

Downloads

Published

2021-01-01

How to Cite

Vallejo, F. ., A. Díaz-Robles, L. ., González, P. ., & Poblete, J. . (2021). Evaluación de la eficiencia energética de un proceso continuo de tratamiento de residuos agroforestales mediante carbonización hidrotérmica. Maderas-Cienc Tecnol, 23, 1–10. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4512

Issue

Section

Article