Using acoustic testing to estimate strength and stiffness of wood-polymer composites

Authors

  • Éverton Hillig
  • Ignacio Bobadilla
  • Francisco Arriaga
  • Guillermo Íñiguez-González

DOI:

https://doi.org/10.22320/s0718221x/2024.04

Keywords:

Cocos nucifera, Pinus taeda, stress wave, ultrasound wave, wood-plastic materials

Abstract

This study used non-destructive testing with ultrasonic and stress wave propagation to evaluate bending strength and stiffness of wood-polymer composites. Twelve composite plate products were produced with different formulations of polymer matrix (high- and low-density polyethylene and polypropylene) and type and proportion of flour (coconut shell and wood). Mechanical and acoustic properties were influenced primarily by the type of matrix used in the composite. The greater the proportion of wood and coconut shell flour the higher the wave propagation velocity, stiffness, and strength. We found a correlation between mechanical properties (strength and stiffness) and wave velocity and stiffness coefficient. We also present linear regression equations of the stiffness and strength of the specimen as a function of wave velocity and stiffness coefficient obtained through non-destructive testing. For polypropylene and high-density polyethylene matrix composites, the stiffness coefficient provided a better estimate of stiffness, while for low-density polyethylene the wave velocity provided better results.

Downloads

Download data is not yet available.

References

Ahmed, S.A.; Adamopoulos, S.; Poggi, F.; Walther, T.; AB, I.I. 2020. Resonance and time-of-flight methods for evaluating the modulus of elasticity of particleboards at different humid conditions. Wood Res 65(3): 365-380. https://doi.org/10.37763/wr.1336-4561/65.3.365380.

American Society for Testing and Materials. 2009. Vicat Softening Temperature of Plastics. ASTM D-1525-09. ASTM. West Conshohocken, PA, USA. https://www.astm.org/d1525-09.html.

American Society for Testing and Materials. 2010a. Density of Plastics by the Density-Gradient Technique. ASTM D-1505-10. ASTM. West Conshohocken, PA, USA. https://www.astm.org/d1505-10.html.

American Society for Testing and Materials. 2010b. Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM D-790-10. ASTM. West Conshohocken, PA, USA. https://www.astm.org/d0790-10.html.

American Society for Testing and Materials. 2013. Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM D-1238-13. ASTM. West Conshohocken, PA, USA. https://www.astm.org/d1238-13.html.

American Society for Testing and Materials. 2014. Tensile Properties of Plastics. ASTM D-638-14. ASTM. West Conshohocken, PA, USA. https://www.astm.org/d0638-14.html.

Baar, J.; Tippner, J.; Gryc, V. 2012. The influence of wood density on longitudinal wave velocity determined by the ultrasound method in comparison to the resonance longitudinal method. Eur J Wood Prod 70(5): 767-769. https://doi.org/10.1007/s00107-011-0550-2.

Baar, J.; Tippner, J.; Rademacher, P. 2015. Prediction of mechanical properties-modulus of rupture and modulus of elasticity of five tropical species by nondestructive methods. Maderas-Cienc Tecnol 17(2): 239-252. http://dx.doi.org/10.4067/S0718-221X2015005000023.

Bachtiar, E.V.; Sanabria, S.J.; Mittig, J.P.; Niemz, P. 2017. Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques. Wood Sci Technol 51(1): 47-67. https://doi.org/10.1007/s00226-016-0851-z.

Bader, T.K.; Dastoorian, F.; Ebrahimi, G.; Unger, G.; Lahayne, O.; Hellmich, C.; Pichler, B. 2016. Combined ultrasonic-mechanical characterization of orthotropic elastic properties of an unrefined bagasse fiber-polypropylene composite. Compos B Eng 95: 96-104. https://doi.org/10.1016/j.compositesb.2016.03.070.

Bekhta, P.A.; Niemz, P.; Kucera, L. 2000. The study of sound propagation in the wood-based composite materials. In: 12th International Symposium on Nondestructive of Wood. University of Western Hungary, Sopron, Hungary. https://www.ndt.net/abstract/wood00/wood00.htm.

Bobadilla, I.; Santirso, M.C.; Herrero, D.; Esteban. M.; Iñiguez Gonzalez, G. 2011. Non-destructive methods to estimate physical aging of plywood. In: 17th International Nondestructive Testing and Evaluation of Wood Symposium. University of West Hungary, Sopron, Hungary. https://oa.upm.es/12494.

Bobadilla, I.; Gonzalez, G.I.; Herrero, M.E.; Martitegui, F.A. 2012. Vibration Method for the Prediction of Aging Effect on Properties of Particleboard and Fiberboard. For Prod J 62(1): 69-74. https://doi.org/10.13073/FPJ-D-11-00137.1.

Braskem. 2016. Poliolefinas - Tabelas de Propriedades. São Paulo: Braskem. Brazil. https://www.braskem.com.br/portal/Principal/arquivos/docs/pt-BR/Propriedades.pdf. (In Portuguese)

Bucur, V. 2006. Acoustics of Wood. 2nd ed. Springer-Verlag, Berlin Heidelberg, www.springer.com/de/book/9783540261230.

Chemtura Corporation. 2006. Material Safety Data Sheet Polybond® 3009. https://www.b2bcomposites.com/msds/ted/73496.pdf. Accessed in March 2021.

Chung, M.J.; Wang, S.Y. 2019. Physical and mechanical properties of composites made from bamboo and woody wastes in Taiwan. J Wood Sci 65(1): 1-10. https://doi.org/10.1186/s10086-019-1833-1.

Dackermann, U.; Crews, K.; Kasal, B.; Li, J.; Riggio, M.; Rinn, F.; Tannert, T. 2014. In situ assessment of structural timber using stress-wave measurements. Mater Struct 47(5): 787-803. https://doi.org/10.1617/s11527-013-0095-4.

Del Menezzi, C.H.S.; Tomaselli, I.; Souza, M.R. 2007. Avaliação não-destrutiva de painéis OSB modificados termicamente: parte 1- efeito do tratamento térmico sobre a velocidade de propagação de ondas de tensão. Sci For 76: 67-75. https://repositorio.unb.br/handle/10482/10464. (In Portuguese)

Dündar, T.; Divos, F. 2014. European Wood NDT & NDE Research and Practical Applications. Eurasian J For Sci 1(1): 35-43. https://doi.org/10.31195/ejejfs.70186.

Fang. Y.; Lin, L.; Feng, H.; Lu, Z.; Emms, G.W. 2017. Review of the use of air-coupled ultrasonic technologies for nondestructive testing of wood and wood products. Comput Electron Agric 137: 79-87. https://doi.org/10.1016/j.compag.2017.03.015.

Güntekin, E.; Kaya, H. 2018. Moisture dependent elastic constants of particleboard layers by ultrasound and compression tests. Wood Research 63(6): 1059-1070. http://www.woodresearch.sk/wr/201806/13.pdf

Han, G.; Wu, Q.; Wang, X. 2006. Stress-wave velocity of wood-based panels: Effect of moisture, product type, and material direction. Forest Prod J 56(1): 28-33. https://www.fs.usda.gov/treesearch/pubs/22992.

Haseli, M.; Layeghi, M.; Hosseinabadi, H.Z. 2020. Evaluation of modulus of elasticity of date palm sandwich panels using ultrasonic wave velocity and experimental models. Measurement 149: 107016. https://doi.org/10.1016/j.measurement.2019.107016.

Hilbers, U.; Thoemen, H.; Hasener, J.; Fruewald, A. 2012. Effects of panel density and particle type on the ultrasonic transmission through wood-based panels. Wood Sci Technol 46: 685-698. https://doi.org/10.1007/s00226-011-0436-9.

Hillig, É.; Bobadilla, I.; Gonçalves, R.; Llana, D.F. 2018. The influence of wood polymer composite (WPC) specimen composition and dimensions on wave propagation. Eur J Wood Prod 76: 1153-1164. https://doi.org/10.1007/s00107-018-1309-9.

Kasal, B.; Lear, G.; Tannert, T. 2010. Stress waves. In: In situ assessment of structural timber. Kasal B, Tannert T (eds) Springer, Dordrecht, Netherlands. https://doi.org/10.1007/978-94-007-0560-9_2.

Legg, M.; Bradley, S. 2016. Measurement of stiffness of standing trees and felled logs using acoustics: A review. J Acoust Soc Am 139(2): 588-604. https://doi.org/10.1121/1.4940210.

Maulana, S.; Gumelar, Y.; Fatrawana, A.; Maulana, M.I.; Hidayat, W.; Sumardi, I.; et al. 2019. Destructive and non-destructive tests of bamboo oriented strand board under various shelling ratios and resin contents. J Korean Wood Sci Technol 47(4): 519-532. https://doi.org/10.5658/WOOD.2019.47.4.519

Mendes, R.F.; Mendes, L.M.; Carvalho, A.G.; Junior, J.B.G.; Mesquita, R.G.A. 2012. Determination of the Elastic Modulus of Particleboard by Stress Wave Timer. FLORAM 19(2): 117-122. http://dx.doi.org/10.4322/floram.2012.013.

Morales, E.A.M.; Lahr, F.A.R.; Nascimento, M.F. 2007. Estudo da variação de velocidade através da espessura de painéis OSB utilizando ondas ultra-sônicas. Minerva 4(1): 57-63. https://www.researchgate.net/publication/320474380. (In Portuguese)

Najafi, S.K.; Ebrahimi, G.; Behjati, S. 2008. Nondestructive evaluation of wood plastic composites using ultrasonic technique. In: 38th International Conference and NDT Exposition. Brno University of Technology, Brno, Czech Republic. https://www.ndt.net/article/defektoskopie2008/papers/87.pdf.

Nazarchuk, Z.; Skalskyi, V.; Serhiyenko, O. 2017. Propagation of elastic waves in solids. In: Acoustic Emission. Foundations of Engineering Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-49350-3_2.

Nesvijski, E.G. 2000. Some aspects of ultrasonic testing of composites. Compos Struct 48(1-3): 151-155. https://doi.org/10.1016/S0263-8223(99)00088-4.

Normalización Española UNE. 1994. Determination of modulus of elasticity and modulus of rupture in static bending. EN 310-93. AENOR. Madrid, Spain. https://tienda.aenor.com/norma-une-en-310-1994-n0008516.

Nzokou, P.; Freed, J.; Kamdem, D.P. 2006. Relationship between non destructive and static modulus of elasticity of commercial wood plastic composites. Holz Roh Werkst 64(1): 90-93. https://doi.org/10.1007/s00107-005-0080-x.

Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. 2013. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Sci Technol 47(2): 329-341. https://doi.org/10.1007/s00226-012-0499-2.

Senalik, A.C.; Schueneman, G.; Ross, R.J. 2014. Ultrasonic-based nondestructive evaluation methods for wood: a primer and historical review. General Technical Report, FPL-GTR-235. USDA Forest Service, Forest Products Laboratory, Madison, WI., USA. https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr235.pdf.

Silva, S.A.M.; Gonçalves, R. 2007. Evaluation of the density distribution in MDF’s using ultrasonic wave technique. Sci For 74: 19-26. https://www.researchgate.net/publication/293356876.

Taghiyari, H.R.; Taheri, A.; Omrani, P. 2017. Correlation between acoustic and physical–mechanical properties of insulating composite boards made from sunflower stalk and wood chips. Eur J Wood Prod 75(3): 409-418. https://doi.org/10.1007/s00107-016-1101-7.

Tucker, B.J.; Bender, D.A.; Pollock, D.G.; Wolcott, M.P. 2003. Ultrasonic Plate Wave Evaluation of Natural Fiber Composite Panels. Wood Fiber Sci 35(2): 266–281. https://wfs.swst.org/index.php/wfs/article/view/306.

Wang, Z.; Li, L.; Gong, M. 2012. Measurement of dynamic modulus of elasticity and damping ratio of wood-based composites using the cantilever beam vibration technique. Constr Build Mater 28(1): 831-834. https://doi.org/10.1016/j.conbuildmat.2011.09.001.

Downloads

Published

2023-08-21

How to Cite

Hillig, Éverton ., Bobadilla, I. ., Arriaga, F. ., & Íñiguez-González, G. . (2023). Using acoustic testing to estimate strength and stiffness of wood-polymer composites . Maderas. Ciencia Y Tecnología, 26, 1–16. https://doi.org/10.22320/s0718221x/2024.04

Issue

Section

Article

Most read articles by the same author(s)