Estimation of density, moisture content and strength properties of Tectona grandis wood using near infrared spectroscopy
Keywords:
Compression properties, density, equilibrium moisture content, flexural properties, near infrared spectroscopyAbstract
Near infrared spectroscopy is non-invasive and may be applied as a rapid and cost effective technique for assessment of quality parameters of timber. Near infrared spectra of Tectona grandis (teak) wood samples of were collected before measuring physical (density, equilibrium moisture content) and strength (flexural and compressive) properties using conventional methods. Partial least squares regression was used to develop calibration models between measured wood properties and near infrared data. The best near infrared spectra pre-processing methods differed by property. Linear calibration models with high R², low error and high ratio of performance to deviation values were observed from partial least squares analysis for different wood properties. These linear models may be applied for rapid and precise estimation of the properties examined in testing and evaluation procedures for commercially valuable teak wood.
Downloads
References
Adedipe, O.E.; Dawson-Andoh, B. 2008. Prediction of yellow-poplar (Liriodendron tulipifera) veneer stiffness and bulk density using near infrared spectroscopy and multivariate calibration. J Near Infrared Spec 16(5): 487-496. https://doi.org/10.1255/jnirs.812
Anda, R.R.; Koch, G.; Richter, H.G.; Talavera, F.J.F.; Guzan, J.A.S.; Satyanarayana, K.G. 2019. Formation of heartwood, chemical composition of extractives and natural durability of plantation grown teak wood from Mexico. Holzforschung 73(6): 547-557. https://doi.org/10.1515/hf-2018-0109
Andrade, C.R.; Trugilho, P.F.; Napoli, A.; Vieira R.S.; Lima, J.T.; Sousa, L.C. 2010. Estimation of the mechanical properties of wood from Eucalyptus urophylla using near infrared spectroscopy. Cerne 16(3): 291-298. http://dx.doi.org/10.1590/S0104-77602010000300005
Arabhosseini, A.; Huisman, W.; Boxtel, A.; Muller, J. 2005. Modeling of the equilibrium moisture content (EMC) of Tarragon (Artemisia Dracunculus L.). Int J Food Eng 1(5): 1-17. https://doi.org/10.2202/1556-3758.1025
Bailleres, H.; Durand, P.Y. 2000. Non-destructive techniques for wood quality assessment of plantation-grown teak. Bois For Trop 263: 17-29. https://doi.org/10.19182/bft2000. 263.a20057
BIS. Indian standard specification 1986. IS 1708: Method of testing small clear specimens of timber. Bureau of Indian Standards, New Delhi, India. 64 pp. https://bis.gov.in
Burns, D.A.; Ciurczak, E.W. 2007. Handbook of Near-Infrared Analysis, 3rd Edition, CRC Press, Boca Raton, FL, USA, 834 pp. https://www.crcpress.com/Handbook-of-Near-Infrared-Analysis/Burns-Ciurczak/p/book/9780849373930
Butterfield, B.G. 1997. Microfibril angle in wood. In Proceedings of the IAWA/IUFRO International Workshop on the Significance of Microfibril Angle to Wood Quality (Editor B.G. Butterfield, International Association of Wood Anatomists; International Union of Forestry Research Organizations), Westport, New Zealand.
Carneiro, M.E.; Magalhaes, W.L.E.; Muniz, G.I.B.; Schimleck, L.R. 2010. Near infrared spectroscopy and chemometrics for predicting specific gravity and flexural modulus of elasticity of Pinus spp. veneers. J Near Infrared Spec 18(6): 481-489. https://www.osapublishing.org/jnirs/abstract.cfm?URI=jnirs-18-6-481
Cooper, P.A.; Jeremic, D.; Radivojevic, S.; Ung, Y.T.; Leblon, B. 2011. Potential of near-infrared spectroscopy to characterize wood products. Can J Forest Res 41(11): 2150-2157. https://doi.org/10.1139/x11-088
Defo, M.; Taylor, A.M.; Bond, B. 2007. Determination of moisture content and density of fresh-sawn red oak lumber by near infrared spectroscopy. Forest Prod J 57(5): 68-72. https://forestprod.org/page/FPJ#
FAO. 2015. Global teak trade in the aftermath of Myanmar’s log export ban’ by Kollert, W.; Walotek, P.J., Planted Forests and Trees Working Paper FP/49/E. Rome, Italy. http://www.fao.org/forestry/plantedforests/67508@170537/en
Fujimoto, T.; Kobori, T.H.; Tsuchikawa, S. 2012. Prediction of wood density independently of moisture conditions using near infrared spectroscopy. J Near Infrared Spec 20(3): 353-359. https://www.osapublishing.org/jnirs/abstract.cfm?URI=jnirs-20-3-353
Gindl, W.; Teischinger, A.; Schwanninger, M.; Hinterstoisser, B. 2001. The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties. J Near Infrared Spec 9(4): 255-261. https://www.osapublishing.org/jnirs/abstract.cfm?URI=jnirs-9-4-255
Haddadi, A.; Hans, G.; Leblon, B.; Pirouz, Z.; Tsuchikawa, S.; Nader, J.; Groves, K. 2016. Determination of optical parameters and moisture content of wood with visible–near infrared spectroscopy, J Near Infrared Spec 24(6): 571-585. https://www.osapublishing.org/jnirs/abstract.cfm?URI=jnirs-24-6-571
Hein, P.R.G.; Campos, A.C.M.; Trugilho, P.F.; Limba, J.T.; Chaix, G. 2009a. Near infrared spectroscopy for estimating wood basic density in Eucalyptus urophylla and Eucalyptus grandis. Cerne 15(2): 133-141. http://www.cerne.ufla.br/site/index.php/CERNE/article/view/197
Hein, P.R.G.; Clair, B.; Brancheriau, L.; Chaix, G. 2010. Predicting microfibril angle in Eucalyptus wood from different wood faces and surface qualities using near infrared spectra. J Near Infrared Spec 18(6): 455-464. https://www.osapublishing.org/jnirs/abstract.cfm?URI=jnirs-18-6-455
Hein, P.R.G.; Lima, J.T.; Chaix, G. 2009b. Robustness of models based on near infrared spectra to predict the basic density in Eucalyptus urophylla wood. J Near Infrared Spec 17(3): 141-150. https://doi.org/10.1255/jnirs.833
Hoffmeyer, P.; Pedersen, J.G. 1995. Evaluation of density and strength of Norway spruce wood by near infrared reflectance spectroscopy. Holz Roh Werkst 53:165-170. https://doi.org/10.1007/BF02716418
Kelley, S.S.; Rials, T.G.; Snell, R.; Groom, L.H.; Sluiter, A. 2004. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood. Wood Sci Technol 38(4): 257-276. https://doi.org/10.1007/s00226-003-0213-5
Kokutse, A.D.; Brancheriau L.; Chaix, G. 2010. Rapid prediction of shrinkage and fiber saturation point on teak (Tectona grandis) wood based on near-infrared spectroscopy. Ann For Sci 67: 403. https://doi.org/10.1051/forest/2009123
Kothiyal, V.; Raturi, A. 2011. Estimating mechanical properties and specific gravity for five-year-old Eucalyptus tereticornis having broad moisture content range by NIR spectroscopy. Holzforschung 65(5): 757-762. https://doi.org/10.1515/hf.2011.055
Leblon, B.; Adedipe, O.; Hans, G.; Haddadi, A.; Tsuchikawa, S.; Burger, J.; Stirling, R.; Pirouz, Z.; Groves, K.; Nader, J. 2013. A review of near-infrared spectroscopy for monitoring moisture content and density of solid wood. For Chron 89(5): 595-606. https://doi.org/10.5558/tfc2013-111
Michell, A.J.; Schimleck, L.R. 1996. NIR spectroscopy of woods from Eucalyptus globulus. Appita J 49(1): 23-26
Mora, C.R.; Schimleck, L.R. 2009. Determination of specific gravity of green Pinus taeda samples by near infrared spectroscopy: comparison of pre-processing method using multivariate figures of merit. Wood Sci Technol 43(5-6): 441-456. https://doi.org/10.1007/s00226-008-0235-0
Mora, C.R.; Schimleck, L.R.; Isik, F. 2008. Near infrared calibration models for the estimation of wood density in Pinus taeda using repeated sample measurements. J Near Infrared Spec 16(6): 517-528. https://doi.org/10.1255/jnirs.816
Naimeke F.B.; Amusant, N.; Kadio, A.A.; Thevenon, M.F.; Nourissier, S.; Adima, A.A.; Allemand C.J.; Chaix, G. 2014. Rapid prediction of phenolic compounds as chemical markers for the natural durability of teak (Tectona grandis Linn f.) heartwood by near infrared spectroscopy. J Near Infrared Spectrosc 22(1): 35-43. https://www.osapublishing.org/jnirs/abstract.cfm?URI=jnirs-22-1-35
Pandey, D.; Brown, C. 2000. Teak: A Global Overview. Unasylva 51(201): 3-12. http://www.fao.org/3/x4565e/x4565e03.htm#P0_0
Prieto N.; Pawluczyk, O.; Dugan, M.E.R.; Aalhus, J.L. 2017. A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products. Applied spectroscopy 71(7): 1403-1426. https://doi.org/10.1177/0003702817709299
Raturi, A.; Kothiyal, V.; Uniyal, K.K.; Semalty, P.D. 2012. Development and evaluation of models for specific gravity of Eucalyptus tereticornis wood by Fourier transformed near infrared spectroscopy and partial least squares regression analysis. J Ind Acad Wood Sci 9(1): 40-45. https://doi.org/10.1007/s13196-012-0069-0
Roggo Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. 2007. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies, J Pharmaceutical and Biomedical Analysis 44(3): 683-700. https://doi.org/10.1016/j.jpba.2007.03.023
Savitzky, A.; Golay, J.E. 1964. Soothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627-1639. https://doi.org/10.1021/ac60214a047
Schimleck, L.R.; Evans, R. 2002. Estimation of microfibril angle of increment cores by near infrared spectroscopy. IAWA J 23(3): 225–234. https://doi.org/10.1163/22941932-90000300
Schimleck, L.R.; Evans, R. 2003. Estimation of air-dry density of increment cores by near infrared spectroscopy. Appita J 56(4): 312-317. http://hdl.handle.net/102.100.100/193697?index=1
Schimleck, L.R.; Evans, R.; Ilic, J. 2001. Estimation of Eucalyptus delegatensis clear wood properties by near infrared spectroscopy. Can J Forest Res 31(10): 1671-1675. https://doi.org/10.1139/x01-101
Schimleck, L.R.; Mora, C.; Daniels, R.F. 2003. Estimation of the physical wood properties of green Pinus taeda radial samples by near infrared spectroscopy. Can J Forest Res 33(12): 2297-2305. https://doi.org/10.1139/x03-173
Schimleck, L.R.; Raymond, C.A.; Beadle, C.L.; Downes, G.M.; Kube, P.D.; French, J. 2000. Applications of NIR spectroscopy to forest research. Appita J 53(6): 458-464. http://hdl.handle.net/102.100.100/208650?index=1
Schwanninger, M.; Rodrigues, J.C.; Fackler, K. 2011. A review of band assignments in near infrared spectra of wood and wood components. J. Near Infrared Spectrosc. 19: 287–308. https://doi.org/10.1255/jnirs.955
So, C.L.; Via, B.K.; Groom, L.H.; Schimleck, L.R.; Shupe, T.F.; Kelley, S.S.; Rials, T.G. 2004. Near infrared spectroscopy in the forest products industry. Forest Prod J 54(3): 6-16. https://www.srs.fs.usda.gov/pubs/ja/ja_so001.pdf
Systat. 2006. SigmaStat (Version 3.5), SigmaPlot (Version 10), Systat Software Inc. San Jose, CA 95131 (USA). https://systatsoftware.com
Tewari, D.N. 1999. A Monograph on Teak (Tectona grandis Linn. f.). International Book Distributors, Dehra Dun, India. 479 pp.
Tsehaye A.; Buchanan, A.; Meder, R.; Newman, R.; Walker, J. 1997. Microfibril angle: determining wood stiffnessin radiate pine. In Microfibril Angle in Wood.
International Association Wood Anatomists. Butterfield B.G. (Ed.), University of Canterbury, Christchurch, New Zealand. pp 323-336
Tsuchikawa, S.; Hirashima, Y.; Sasaki, Y.; Ando, K. 2005. Near infrared spectroscopic study of the physical and mechanical properties of wood with meso and microscale anatomical observation. Appl Spectrosc 59(1): 86-93. https://www.osapublishing.org/as/abstract.cfm?URI=as-59-1-86
Tsuchikawa, S.; Kobori, H. 2015. A review of recent application of near infrared spectroscopy to wood science and technology. J Wood Sci 61: 213-220. https://doi.org/10.1007/ s10086-015-1467-x
Tsuchikawa, S.; Schwanninger M. 2013. A review of recent near-infrared research for wood and paper (Part 2). Applied Spectroscopy Reviews 48(7): 560-587. https://doi.org/10.1080/ 05704928.2011.621079
Via, B.K.; So, C.L.; Shupe, T.F.; Stine, M.; Groom, L.H. 2005. Ability of near infrared spectroscopy to monitor air-dry density distribution and variation of wood. Wood Fiber Sci 37(3): 394-402. https://wfs.swst.org/index.php/wfs/article/view/569/569
Williams, P.C. 2001. Implementation of near-infrared technology. In Near-Infrared Technology in the Agricultural and Food Industries. P. Williams `& K. Norris (Eds.) 2nd Edition, American Association of Cereal Chemists, St. Paul, MN, USA, 145–169 pp.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.