Quantitative evaluation of microwave irradiation on short-rotation plantation wood species

Authors

  • Sauradipta Ganguly
  • Sanjeet Kumar Hom
  • Sadhna Tripathi
  • Subhrajit Ghosh
  • Renu Kanyal
  • Ajmal Samani

Keywords:

Impregnation, microwave, permeability, Southern yellow pine, Tectona grandis, treatability

Abstract

The durability of imported timber is a matter of growing concern in the tropical Indian climate, with their refractory nature further adding to the woes with respect to further processing. In the present study, the effect of microwave pre-treatment, exposure time and initial wood moisture content on retention, treatability and cross-sectional anatomical properties of Tectona grandis and Southern yellow pine imported from Ghana and South America were evaluated. Water based preservative copper chrome borate (CCB) of 2 % concentration was used for the study. The experimental study in combination with dip-diffusion method returned with significant improvement in retention of about 5-6 folds more than the control sets in Southern yellow pine and Tectona grandis. Another set of Southern yellow pine and Tectona grandis samples were further treated using a full cell pressure method after microwave, without initial vacuum, which showed similar trends with 3-4 folds increase in retention over controls. Both experiments returned with significant improvement in the treatability class of Tectona grandis and Southern yellow pine.  Anatomical analysis was performed using a light microscope with 5 and 10x magnifications on treated and untreated samples of both Tectona grandis and Southern yellow pine.  The outcome of the anatomical study exhibited improvement in vessel diameters in the treated samples of Tectona grandis with reduction in the degree of occlusion by presence of tyloses. For Southern yellow pine, checks on micro level and cracks on macro level appeared along the ray cells and the diameter of the resin canals were substantially expanded which ascertains that microwave pre-treatment ameliorated the flow of fluids in the wood microstructure which improved permeability and resulted in better uptake and penetration. 

Downloads

Download data is not yet available.

References

American Hardwood Export Council. 2016. India Wood Sector Market Study, Woodzon https://www.michigan.gov/documents/mdard/AHEC-India_Wood_Sector_Market_Study-2016reduced_550865_7.pdf

Bureau of Indian Standards. 1991. IS 11215: Moisture Content of Timber and Timber Products-Methods for Determination. Manak Bhawan, New Delhi, India. https://archive.org/details/gov.in.is.11215.1991

Bureau of Indian Standards. 1991. IS 2753: Methods for estimation of preservatives in treated timber and in treating solutions. Manak Bhawan, New Delhi, India. https://law.resource.org/pub/in/bis/S03/is.2753.1.1991.pdf

Bureau of Indian Standards. 2001. IS 401: Preservation of timber code of practice. Manak Bhawan, New Delhi, India. https://archive.org/details/gov.in.is.401.2001

Cheung, K.C.K. 2019. Wooden Structures. Ref Modul Mater Sci Mater Eng 1: 1–14. https://doi.org/10.1016/B978-0-12-803581-8.02225-6

Cooper, P.; Morris, P. 2007. Challenges in treating Canadian species. In Proceedings of 28th annual general meeting. Canadian wood preservation association, Quebec, Canada. pp 9–20. https://www.cwpa.ca/publications/#tab-2007-tab

Dashti, H.; Tarmian, A.; Faezipour M.; Hedjazi, S.; Shahverdi, M. 2012. Effect of microwave radiation and pre-steaming treatments on the conventional drying characteristics of fir wood (Abies alba L.). Lignocellulose 1: 166–173. http://jalc.sbu.ac.ir/index.php/Lignocellulosic/article/view/1429

Dömény, J.; Koiš, V.; Dejmal, A. 2014. Microwave radiation effect on Axial Fluid Permeability in false heartwood of Beech (Fagus sylvatica L.). BioResources 9(1): 372-380. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/4619

European Standard. 2016. EN 350: Durability of wood and wood-based products – Testing and classification of the durability to biological agents of wood and wood-based materials. https://standards.iteh.ai/catalog/standards/cen/b02d18a7-87ce-4a20-84c7-c0de641a2780/en-350-2016

Food and Agriculture Organization. 2017. Global Forest Products- Facts and Figures 2016. Food and Agriculture Organization of the United Nations Rome. http://www.fao.org/3/I7034EN/i7034en.pdf

Flugsrud, K.; Hoem, B.; Kvingedal, E.; Rypdal, K. 2001. Estimating the net emission of CO2 from harvested wood products: A comparison between different approaches. Norwegian Pollution Control Authority, Norway. http://www.sft.no/publikasjoner/luft/1831/ta1831.pdf

Ganguly, S. 2018. Conserving wood biodiversity with the help of wood science and technology. Int Res J Environmental Sci 7(11): 42-44. http://www.isca.in/IJENS/Archive/v7/i11/6.ISCA-IRJEvS-2018-065.pdf

Ganguly, S.; Tripathi, S. 2018. Study on Effect of Microwave Treatment on Wood Permeability and Preservative Retention in Imported Timber. J Agroecology Nat Res Management 5(1): 34-40. https://www.krishisanskriti.org/Publication.html

Ganguly, S.; Tripathi, S.; Tiwari, P.; Sumi, A.; Kanyal, R. 2020. Screening of Azadirachta indica seed oil against sap-stain and mould fungi in imported Tectona grandis and Southern Yellow Pine wood through fumigation. J Trop For Sci 32(2): 114–124. https://doi.org/10.26525/jtfs32.2.114

Gärtner, H.; Schweingruber, F.H. 2013. Microscopic Preparation Techniques for Plant Stem Analysis. Remagen: Kessel Publishing House. www.forestrybooks.com

Gašparik M.; Barsik, S. 2014. Effect of Plasticizing by Microwave Heating on Bending Characteristics of Beech Wood. Bioresources 9(3): 4808-4820. https://bioresources.cnr.ncsu.edu/resources/effect-of-plasticizing-by-microwave-heating-on-bending-characteristics-of-beech-wood/

Gašparik, M.; Gaff M. 2013. Changes in temperature and moisture content in beech wood plasticized by microwave heating. Bioresources 8(3): 3372-3384. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/3974

He, S.; Lin, L.; Fu, F.; Zhou, Y.; Fan, M. 2014. Microwave treatment for enhancing the liquid permeability of Chinese fir, Bioresources 9(2): 1924-1938. https://bioresources.cnr.ncsu.edu/resources/microwave-treatment-for-enhancing-the-liquid-permeability-of-chinese-fir/

Hill, C.A.S. 2007. Acetylated wood – the science behind the material. https://www.accoya.com/app/uploads/2020/04/Acetylated-Woods-Callum Hill.pdf

Hom, S.K.; Ganguly, S.; Bhoru,Y.U.; Samani A. 2020a. Effect of chemical modification on dimensional stability of Pinus radiata D. Don using acetic anhydride. J For Sci 66: 208–217. https://doi.org/10.17221/13/2020-JFS

Hom, S.K.; Ganguly, S.; Samani, A; Tripathi, S. 2020b. Improvement in fire retardancy with double-step chemical modification on Pinus radiata D. Don using dimethyl methylphosphonate with propylene oxide and maleic anhydride. Int Wood Prod J 11(3): 138-145. https://doi.org/10.1080/20426445.2020.1765624

Hong-Hai, L.; Qing-Wen, W.; Lin, Y.; Tao, J.; Ying-Chun, C. 2005. Modification of larch wood by intensive microwave irradiation. J For Res 16(3): 237–240. https://doi.org/10.1007/BF02856823

Intergovernmental Panel on Climate Change. 2007. Renewable energy sources and climate change mitigation. IPCC, Mauritius. https://www.ipcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/

Jiang T.; Zhou Z.F.; Wang Q.W. 2006. Effects of intensive microwave irradiation on the permeability of larch wood. Sci Silv Sin 42(11): 87–92. http://d.wanfangdata.com.cn/periodical/lykx200611016

Kutnik, M.; Suttie, E.; Brischke, C. 2014. European standards on durability and performance of wood and wood-based products—Trends and challenges. Wood Mater Sci Eng 9: 122–133. https://doi.org/10.1080/17480272.2014.894574

Li, J.; Zhang, L.P.; Peng, F.; Bian, J.; Yuan, T.Q.; Xu, F.; Sun, R.C. 2009. Microwave-assisted solvent-free acetylation of cellulose with acetic anhydrideinthepresence ofiodine as a catalyst. Molecules 14(9): 3551–3566. https://doi.org/10.3390/molecules14093551

Liu, H.H.; Wang, Q.W.; Yang, L.; Jiang, T.; Cai, Y.C. 2005. Modification of larch wood by intensive microwave irradiation, J For Res 16 (3): 237–240. https://doi.org/10.1007/BF02856823

Miura, M.; Kaga, H.; Sakurai, A.; Takahashi, K. 2004. Rapid pyrolysis of wood block by microwave heating. J Anal Appl Pyrolysis 71(1): 187-199. https://doi.org/10.1016/S0165-2370(03)00087-1

Montiel, J.P.Q. 2016. Analysis of India as a Market Area for Sawn wood. Thesis. Department of Forest Sciences, University of Helsinki, Finland. https://helda.helsinki.fi/handle/10138/161658

Morris, P.I.; McFarling, S.M.; Zahora, A.R. 2002. Treatability of refractory species with amine and amine/ammoncal formulations of ACQ. For Prod J 52(10): 37–42. https://ehu.idm.oclc.org/login?url=https://www.proquest.com/scholarly-journals/treatability-refractory-species-with-amine/docview/214635127/se-2?accountid=17248

Ramezanpour, M.; Tarmian, A.; Taghiyari, H.R. 2015. Improving impregnation properties of Fir wood to acid copper chromate (ACC) with microwave pretreatment. iforest 8(1): 89–94. https://doi.org/10.3832/ifor1119-007

Saha, S.; Ganguly, S.; Tripathi, S. 2020. Improving preservative retention and penetration of imported Tectona grandis using microwave treatment. Pro Ligno 16 (3): 44-52. http://www.proligno.ro/ro/articles/2020/3/SAHA_Final.pdf

Samani, A.; Ganguly, S.; Kanyal, R.; Tripathi S. 2019. Effect of microwave pre-treatment on preservative retention and treatability of Melia composita wood. J For Sci 65: 391–396. https://doi.org/10.17221/39/2019-JFS

Samani, A.; Hom, S.K.; Bhoru, Y.U.; Ganguly, S. 2020. Dimensional Stability of Wood Modified by Citric Acid. Ind For 146 (5): 455-458. https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=54710

Schneider, L., Gärtner, H. 2013. The advantage of using a starch based non-Newtonian fluid to prepare micro sections. Dendrochronologia 31(3): 175-178. https://doi.org/10.1016/j.dendro.2013.04.002

Sethy, A.K.; Torgovnikov, G.; Vinden, P.; Przewloka, S. 2016. Moisture conditioning of wood using a continuous microwave dryer, Dry Technol 34(3): 318-323. https://doi.org/10.1080/07373937.2015.1052502

Sethy, A.K.; Vinden, P.; Torgovnikov, G.; Militz, H.; Mai, C.; Kloeser, L.; Przewloka, S. 2012. Catalytic Acetylation of Pinus radiata (D. Don) with Limited Supply of Acetic Anhydride Using Conventional and Microwave Heating. J Wood Chem Technol 32(1): 1-11. https://doi.org/10.1080/02773813.2011.573121

Singh, T. P.; Varalakshmi, V.; Ahluwalia, S. K. 2000. Carbon Sequestration through Farm Forestry: Case from India. Ind For 126(12): 1257-1264. https://www.cabdirect.org/cabdirect/abstract/20013044895

Sood, D. 2014. Gain Report: Wood and Wood Products in India 2014, New Delhi. Gain Report No. IN4049, USDA Foreign Agricultural Service. Global Agricultural Information Network. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Wood%20and%20Wood%20Products%20in%20India%202014_New%20Delhi_India_6-24-2014.pdf

Sood, D. 2019. Wood and Wood Products Update 2019. USDA Foreign Agricultural Service GAIN Report Number IN 9033, Dated 17.04.2019., New Delhi. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Wood%20and%20Wood%20Products%20Update%202019_New%20Delhi_India_4-17-2019.pdf

SPSSv25. 2017. International Business Machines Corporation, Armonk, New York.

Sundararaj, R.; Shanbhag, R.R.; Nagaveni H.C.; Vijayalakshmi G. 2015. Natural durability of timbers under Indian environmental conditions—an overview. Int Biodeterior Biodegradation 103: 196–214. https://doi.org/10.1016/j.ibiod.2015.04.026

Tarmian, A.; Tajrishi, Z.I.; Oladi, R.; Efhamisisi, D. 2020. Treatability of wood for pressure treatment processes: a literature review. Eur J Wood Prod 78: 635–660. https://doi.org/10.1007/s00107-020-01541-w

Terziev, N.; Daniel, G. 2013. Application of high frequency treatments for improvedpermeability of Norway spruce (Picea abies Karst.) wood. In Wood the Best Materialfor Mankind (Kudela, J.; Babiak, M. eds), Zvolen: Arbora Publishers: 15–19. https://iaws-web.org/files/file/Zborník%202012.pdf

Torgovnikov, G.; Vinden, P. 2009. High-intensity microwave wood modification for increasing permeability. For Prod J 59 (4): 84-92. https://www.cabdirect.org/cabdirect/abstract/20093215187

Torgovnikov, G.; Vinden, P. 2010. Microwave wood modification technology and its applications. For Prod J 60(2): 173–182. https://doi.org/10.13073/0015-7473-60.2.173

Treu A.; Gjolsjo S. 2008. Spruce impregnation, finally a breakthrough by means of microwave radiation. In Proceedings of the 4th Meeting of the Nordic Baltic Network in Wood Material Science & Engineering (WSE). Riga (Latvia) 13–14 Nov 2008. Horsholm, SNS-Nordic Forest Research Co-operation Committee, Copenhagen University: 42–48. https://agris.fao.org/agris-search/search.do?recordID=LV2009000588

Tripathi, S. 2012. Treatability evaluation of meranti with ZiBOC and CCA. Int Wood Prod J 3(2): 70–76. https://doi.org/10.1179/2042645311Y.0000000021

United Nations Economic Commission for Europe. 2008. Harvested Wood Products in the Context of Climate Change Policies. Geneva Timber and Forest Discussion Papers 55, United Nations, Geneva.

Vinden, P.; Torgovnikov, G.; Hann, J. 2011. Microwave modification of radiata pine railway sleepers for preservative treatment. Eur J Wood Prod 69: 271–279. https://doi.org/10.1007/s00107-010-0428-8

Vinden, P.; Torgovnikov, G.; Sethy, A.K. 2017. Conveyor Belt Pressure Impregnation of Wood. In Wood is Good. Pandey K., Ramakantha V., Chauhan S., Arun Kumar A. (eds) Springer, Singapore. https://doi.org/10.1007/978-981-10-3115-1_21

Von Arx, G.; Crivellaro, A.; Prendin, A.L.; Čufar, K.; Carrer, M. 2016. Quantitative Wood Anatomy—Practical Guidelines. Front Plant Sci 7:781. https://doi.org/10.3389/fpls.2016.00781

Vongpradubchai, S.; Rattanadecho, P. 2009. The microwave processing of wood using a continuous microwave belt drier. Chem Eng Process 48(5): 997–1003. https://doi.org/10.1016/j.cep.2009.01.008

Wang, D.; Peng, L.; Zhu, G.; Fu, F.; Zhou, Y.; Song, B. 2014. Improving the Sound Absorption Capacity of Wood by Microwave Treatment. Bioresources 9 (4): 7504-7518. https://bioresources.cnr.ncsu.edu/resources/improving-the-sound-absorption-capacity-of-wood-by-microwave-treatment/

Weng, X.; Zhou, Y.; Fu, Z.; Gao, X.; Zhou, F.; Fu, F. 2020. Effects of Microwave Treatment on Microstructure of Chinese Fir. Forests 11(7): 772. https://doi.org/10.3390/f11070772

World Wide Fund. 2012. WWF – Living forest report. Chapter 4. World Wide Fund for Nature. https://d2ouvy59p0dg6k.cloudfront.net/downloads/living_forests_report_ch4_forest_products.pdf

Yeung, E. C. T.; Stasolla, C.; Sumner, M. J.; Huang, B. Q. 2015. Plant Microtechniques and Protocols. New York, NY: Springer. https://link.springer.com/book/10.1007/978-3-319-19944-3

Downloads

Published

2021-01-01

How to Cite

Ganguly, S. ., Kumar Hom, S., Tripathi, S. ., Ghosh, S. ., Kanyal, R. ., & Samani, A. . (2021). Quantitative evaluation of microwave irradiation on short-rotation plantation wood species . Maderas-Cienc Tecnol, 23, 1–14. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4551

Issue

Section

Article