A novel method for producing a glulam from the wood of peeler cores

Authors

  • Daniel Koynov
  • Rosen Grigorov
  • Miglena Valyova

DOI:

https://doi.org/10.4067/s0718-221x2022000100404

Keywords:

Engineered wood, glulam, peeler cores, Populus sp., small-diameter logs

Abstract

This study presents an opportunity for rational utilization of poplar wood peeler cores in the production of glued laminated timber (glulam) beams. An approach for optimal use of small-diameter raw material with a circular cross-section is also proposed in order to obtain a final product in a significantly high quantitative yield. The applied novel method of sawing the peeler cores and subsequent combination of gluing the obtained lamellas allows to achieve: reduction of labor and energy consumption in the processing; rational utilization of this waste raw material; obtaining a product sought by consumers; opportunity to implement technology for the production of glulam from peeler cores. The results showed that sawing the peeler cores and obtaining lamellas with a trapezoidal cross-section leads to a high quantitative yield of 76,3 %. The final quantitative yield in subsequent technological operations in the manufacturing of engineered wood of glulam type reaches 48,8 % of the volume of  raw material. In addition, equations have been working are used for the determination of the most suitable sizes of the lamellas, depending on the diameter and the kerf width.

Downloads

Download data is not yet available.

References

Antov, P.; Savov, V. 2019. Possibilities for manufacturing eco-friendly medium density fibreboards from recycled fibres – a Review. In Proceedings of the 30th International Conference on Wood Science and Technology- ICWST 2019, 12-13 December 2019, Zagreb, Croatia. pp. 18-24. https://core.ac.uk/download/pdf/288163581.pdf#page=31.

Antov, P.; Savov, V.; Neykov, N. 2020a. Sustainable bio-based adhesives for eco-friendly wood composites. A Review. Wood Res-Slovakia 65(1): 51-62.

37763/wr.1336-4561/65.1.051062.

Antov, P.; Savov, V.; Neykov, N. 2020b. Reduction of formaldehyde emission from engineered wood panels by formaldehyde scavengers – a Review. In Proceedings of 13th International Scientific Conference WoodEMA 2020 and 31-st International Scientific Conference ICWST 2020. Sustainability of forest-based industries in the global economy, September 28-30, Vinkovci, Croatia. pp. 289-294. http://www.woodema.org/proceedings/WoodEMA_2020_Proceedings.pdf.

Bal, B. C.; Bektaş, İ. 2014. Some mechanical properties of plywood produced from eucalyptus, beech, and poplar veneer. Maderas-Cienc Tecnol 16(1): 99-108. https://dx.doi.org/10.4067/S0718-221X2014005000009

Balatinecz, J.J.; Kretschmann, D.E. 2001. Properties and utilization of poplar wood. In Poplar Culture in North America. Part A. Chapter 9: 277-291. NRC Research Press, National Research Council of Canada, Ottawa, ON KIA OR6, Canada. https://www.fs.usda.gov/treesearch/pubs/8597

Campbell, E. 2013. Simulation of sawmill yields at Hyne Tuan pine mill. Ph.D. Thesis, University of Southern QLD, Australia. https://eprints.usq.edu.au/24656/1/Campbell_2013.pdf.

Castro, G.; Fragnelli, G. 2006. New technologies and alternative uses for poplar wood. Bol Inf CIDEU 2: 27-36. https://dialnet.unirioja.es/servlet/articulo?codigo=2258287

Executive Forest Agency (Bulgaria). 2015. Annual report on the afforested area until December 31, 2015. Forest fund of Bulgaria: forms 2, 3 and 5. (In Bulgarian).

Frihart, C.R. 2015. Introduction to Special Issue: Wood Adhesives: past, present, and future. Forest Prod J 65(1-2): 4-8. https://doi.org/10.13073/65.1-2.4.

Heräjärvi, H.; Jouhiaho, A.; Tammiruusu, V.; Verkasalo, E. 2004. Small-diameter Scots pine and birch timber as raw materials for engineered wood products. Int J For Eng 15(2): 23-34. https://doi.org/10.1080/14942119.2004.10702494.

Hernandez, R.; Green,W.; Kretschmann, E.; Verrill, P. 2005. Improved utilization of small-diameter ponderosa pine in glulam timber. Res. Pap. FPL-RP-625. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. https://doi.org/10.2737/FPL-RP-625.

Lengowski, E.C.; Bonfatti Júnior, E.A.; Dallo, R.; Nisgoski, S.; Monteiro de Mattos, J.L.; Prata, J.G. 2020. Nanocellulose-reinforced phenol-formaldehyde resin for plywood panel production. Maderas-Cienc Tecnol 23: 1-10. https://doi.org/10.4067/s0718-221x2021000100405.

Loginova, G.А. 1999. Improving the production efficiency of thin wood material with increased demand. Ph.D. Thesis, Siberian State Technological University. Krasnoyarsk, Russia (In Russian). https://www.dissercat.com/content/povyshenie-effektivnosti-proizvodstva-tonkikh-pilomaterialov-povyshennogo-sprosa.

Muñoz, F.; Moya, R. 2018. Effect of nanoclay-treated UF resin on the physical and mechanical properties of plywood manufactured with wood from tropical fast growth plantations. Maderas-Cienc Tecnol 20(1): 11-24 http://dx.doi.org/10.4067/S0718-221X2018005001202 .

Ogunsanwo, O. Yekin; Adenaiya, A.O.; Adedeji, C.A. 2019. Effect of adhesive quantity on selected physico-mechanical properties of Bamboo glulam. Maderas-Cienc Tecnol 21(1): 113-122. https://dx.doi.org/10.4067/S0718-221X2019005000111.

Oliveira de, R.G.E.; Gonçalves, F.G.; Segundinho, P.G. de A.; Oliveira, J.T. da S.; Paes, J.B.; Chaves, I.L.S.; Brito, A.S. 2020. Analysis of glue line and correlations between density and anatomical characteristics of Eucalyptus grandis × Eucalyptus urophylla glulam. Maderas-Cienc Tecnol 22(4): 495-504. https://dx.doi.org/10.4067/S0718-221X2020005000408.

Petkov, Т.; Mihailov, V. 2019. Study of lightweight beams made from wood with double t section – I- beams. The Journal of Management and Sustainable Development 79(6): 105-110. ISSN 1311-4506 (In Bulgarian).

Petkov, T.; Mihailov, V. 2020. Influence of the applied pressure on finger joined end-to-end wood. Innovation in Woodworking Industry and Engineering Design IX (1): 16-20. http://www.scjournal-inno.com/en/article-363.htm#dl365.

Réh, R.; Igaz, R.; Krišťák, Ľ.; Ružiak, I.; Gajtanska, M.; Božíková, M.; Kučerka, M. 2019. Functionality of beech bark in adhesive mixtures used in plywood and its effect on the stability associated with material systems. Materials 12: 1298. https://doi.org/10.3390/ma12081298.

Réh, R.; Krišťák, L.; Sedliačik, J.; Bekhta, P.; Božiková, M.; Kunecová, D.; Vozárová, V.; Tudor, E.M.; Antov, P.; Savov, V. 2021. Utilization of birch bark as an eco-friendly filler in urea-formaldehyde adhesives for plywood manufacturing. Polymers 13: 511. https://doi.org/10.3390/polym13040511.

Rongrong, L.; Pingxiang, C.; Xiaolei, G.; Futang, J.; Ekevad, M.; Wang, X. A. 2015. Novel sawing method for small-diameter log. Wood Res-Slovakia 60(2): 293-300. http://www.woodresearch.sk/wr/201502/13.pdf.

Sinković, T.; Jambreković, B.; Šefc, B.; Ištok, I.; Veseličić, F.; Sedlar, T. 2017. Some physical and mechanical properties of white poplar (Populus alba L.) wood grown in Varaždin region. In Proceedings of 28th International Conference on Wood Science and Technology 2017. 07-08 December. Zagreb, Croatia. pp. 101-106. https://www.bib.irb.hr/914647.

Starkova, А.V. 2004. Improving the technology for the production of shaped round timber blanks. Ph.D. Thesis, Arkhangelsk State Technical University. Arkhangelsk, Russia. https://www.dissercat.com/content/sovershenstvovanie-tekhnologii-proizvodstva-profilnykh-zagotovok-iz-kruglykh-lesomaterialov (In Russian).

Tenorio, C.; Moya, R.; Munoz, F. 2011. Comparative study on physical and mechanical properties of laminated veneer lumber and plywood panels made of wood from fast-growing Gmelina arborea trees. J Wood Sci 57: 134-139. https://doi.org/10.1007/s10086-010-1149-7.

Wiedenbeck, J.; Wiemann, M.; Alderman, D.; Baumgras, J.; Luppold, W. 2003. Defining hardwood veneer log quality attributes. Gen. Tech. Rep. NE-313. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 36 p. https://doi.org/10.2737/NE-GTR-313.

Yang, K.C. 1994. Impact of spacing on width and basal area of juvenile and mature wood in Picea mariana and Picea glauca. Wood Fiber Sci 26(4): 479–488. https://wfs.swst.org/index.php/wfs/article/view/818.

Yusof, N.M.; Tahir, P.M.; Lee, S.H.; Sabaruddin, F.A.; James, R.M.S.; Khan, M.A.; Lee, C.H.; Roseley, A.S.M. 2021. Thermal properties of Acacia mangium Cross Laminated Timber and its gluelines bonded with two structural adhesives. Maderas-Cienc Tecnol 23(2): 1-10. https://dx.doi.org/10.4067/s0718-221x2021000100402.

Zobel, B.J.; Sprague, J.R. 1998. Characteristics of Juvenile Wood. In: Juvenile Wood in Forest Trees. Springer Series in Wood Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72126-7_2.

Downloads

Published

2021-09-21

How to Cite

Koynov, D. ., Grigorov, R. ., & Valyova, M. . (2021). A novel method for producing a glulam from the wood of peeler cores. Maderas. Ciencia Y Tecnología, 24, 1–8. https://doi.org/10.4067/s0718-221x2022000100404

Issue

Section

Article