Influence of growth parameters on wood density of Acacia auriculiformis


  • Jesugnon Fifamè Murielle Féty Tonouewa
  • Samadori Sorotori Honoré Biaou
  • Eméline Sêssi Pélagie Assede
  • Patrick Langbour
  • Ogoulonou Rodrigue Balagueman



Acacia auriculiformis, log, NIRS, tree diameter, wood characteristics


Understanding the drivers of wood density variation both within a tree and between trees is important in predicting the quality of wood logs and improving this quality through adequate forestry management. This study examined the effect of the diameter growth of Acacia auriculiformis on its wood density variation. The study was conducted in the South of Benin in four plantations of Acacia auriculiformis. Near infrared spectroscopy (NIRS) method was used to predict the basic density of 225 tree wood cores of Acacia auriculiformis. A predicting model of the average tree density using the diameter as predictor was established. The relationship between wood density and tree diameter was best described by a linear mixed-effect model. The average wood density of trees increased with the diameter. The study concluded that the quality of the species logs can be improved through regular thinning and genetic selection.


Download data is not yet available.


Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In Petrox B.; F. Casaki, B., eds. Second international symposium on information theory, Budapest, Akadémiai Kiadò: 267-281.

Alves, A.; Santos, A.; Rozenberg, P.; Pâques, L.E.; Charpentier, J-P.; Schwanninger, M.; Rodrigues, J. 2010. A common near infrared—based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix 3 eurolepis. Wood Sci Technol 46: 157–175.

Amoussou, E.; Vodounon, S.H.T.; Cledjo, F.P.; Allagbe, Y.B.S.; Akognongbe, J.S.A.; Houndenou, C.; Mahe, G., Camberlin, P. ; Boko, M.; Perard, J. 2016. Evolution climatique du Bénin de 1950 à 2010 et son influence sur les eaux de surface. In Fallot, J-M.; Joly, D.; Bernard, N., eds. Actes du

XXIXe Colloque de l’Association Internationale de Climatologie, Lausanne – Besançon, July 6-9, 2016: 231- 236.

de Aza, C.H.; Turrión, M.B.; Pando, V.; Bravo, F. 2011. Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Ann For Sci 68: 1067-1076.

Bertaud, F.; Holmbom, B. 2004. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38: 245–256.

Bouriaud, O.; Leban, J-M.; Bert, D.; Deleuze, C. 2005. Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25: 651 – 660.

Boyle, T.J.B.; Balatinecz, J.J.; McCaw, P.M.; 1988. Genetic control of some wood properties in black spruce. In Proceedings of the Twenty-first Meeting of the Canadian Tree Improvement Association 2: August 17-21, 1987, Truro, Nova Scotia.

Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; Lescure, J.-P.; Nelson, B.W.; Ogawa, H.; Puig, H.; Riéra, B.; Yamakura, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87–99.

Chave, J.; Muller-Landau, H.C.; Baker, T.R.; Easdale, T.A.; Steege, H.T.; Webb, C.O. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16(6): 2356–2367.[2356:RAPVOW]2.0.CO;2

Chowdhury, M.Q.; Ishiguri, F.; Iizuka, K.; Hiraiwa, T.; Matsumoto, K. ; Takashima, Y.; Yokota, S.; Yoshizawa, N. 2009. Wood property variation in Acacia auriculiformis growing in Bangladesh. Wood Fibre Sci 41: 359–365.

Chowdhury, Md.Q.; Ishiguri, F.; Hiraiwa, T.; Takashima, Y.; Iizuka, K.; Yokota, S.; Yoshizawa, N. 2012. Radial variation of bending property in plantation grown Acacia auriculiformis in Bangladesh. Forest Science and Technology 8(3): 135-138.

Cooper, P.A.; Jeremic, D.; Radivojevic, S.; Ung, Y.T.; Leblon, B. 2011. Potential of near-infrared spectroscopy to characterize wood products. Can J For Res 41(11): 2150–2157. Crawley, M.J. 2007. The R Book. Wiley: Chichester, UK, 951p

Curran, T.J.; Gersbach, L.N.; Edwards, W.; Krockenberger, A.K. 2008. Wood density predicts plant damage and vegetative recovery rates caused by cyclone disturbance in tropical rainforest tree species of North Queensland, Australia. Austral Ecol 33(4): 442–450.

DeBell, J.D.; Tappeiner, J.C.; Krahmer, R.L. 1994. Wood density of western hemlock: effect of ring width. Can J For Res 24: 638 – 641.

DeBell, D.S.; Keyes, C.R.; Gartner, B.L. 2001. Wood density of Eucalyptus saligna grown in Hawaiian plantations: effects of silvicultural practices and relation to growth rate. Aust For 64(2): 106 – 110.

Diesel, K.M.F.; da Costa, F.S.L.; Pimenta, A.S.; de Lima, K.M.G. 2014. Near-infrared spectroscopy and wavelength selection for estimating basic density in Mimosa tenuiflora [Willd.] Poiret wood. Wood Sci Technol 48: 949-959.

Ducey, M.J. 2012. Evergreenness and wood density predict height–diameter scaling in trees of the northeastern United States. For Ecol Manag 279: 21–26.

Gapare, W.J.; Ivkovié, M.; Baltunis, B.S.; Matheson, C.A.; Wu, H.X. 2010. Genetic stability of wood density and diameter in Pinus radiata D. Don plantation estate across Australia. Tree Genet. Genomes 6: 113–125.

Githiomi, J.K.; Kariuki, J.G. 2010. Wood basic density of Eucalyptus grandis from plantations in central rift valley, Kenya: variation with age, height level and between sapwood and heartwood. J Trop For Sci 22(3): 281–286.

Guilley, E.; Hervé, J.-C.; Nepveu, G. 2004. The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl. For Ecol Manag 189: 111–121.

Guller, B.; Isik, K.; Cetinay, S. 2012. Variations in the radial growth and wood density components in relation to cambial age in 30-year-old Pinus brutia Ten. at two test sites. Trees 26: 975–986.

Hall, J.P. 1984. Relationship between wood density and growth rate and the implications for the selection of black spruce (Picea mariana (Mill.) BSP) plus trees. Newfoundland Forrest Research Centre, Canadian Forest Service.

Hai, P.H.; Hannrup, B.; Harwood, C.; Jansson, G.; Ban, D.V. 2010. Wood stiffness and strength as selection traits for sawn timber in Acacia auriculiformis. Can J For Res 40(2): 322 – 329.

Hietz, P.; Valencia, R.; Wright, S.J.; 2013. Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests. Funct Ecol 27: 684–692.

Hounlonon, M.C.; Kouchade, C.A.; Kounhouewa, B.; Tonouéwa, M. 2018. Caractéristiques technologique d’une essence de bois du Bénin à vocation bois énergie, actuellement utilisées comme bois d’œuvre : Acacia auriculiformis. CIFEM 4: 193 – 199.

Huong, V.D.; Mendham, D.S.; Beadle, C.; Hai, N.X.; Close, D.C. 2020. Growth, physiological responses and wood production of an Acacia auriculiformis plantation in southern Vietnam following mid-rotation thinning, application of phosphorus fertiliser and organic matter retention. For Ecol Manag 472: 118211.

Jakubowski, M.; Tomczak, A.; Jelonek, T.; Grzywiński, W. 2020. Variations of wood properties of birch (Betula pendula Roth) from a 23-year old seed orchard. Wood Res 65(1): 75 – 86.

Mäkinen, H.; Hynynen, J. 2012. Predicting wood and tracheid properties of Scots pine. For Ecol Manag 279: 11–20.

Mevanarivo, Z.E.; Ramananantoandro, T.; Filho, M.T.; Alfredo Napoli, A.; Razafimahatratra, A.R.; Herintsitohaina Ramarson Razakamanarivo, H.R.; Chaix, G. 2020. Variability in the physico-chemical properties of wood from Eucalyptus robusta depending on ecological growing conditions and forestry practices: the case of smallholdings in the Highlands of Madagascar. Maderas-Cienc Tecnol 22(4). Retrieved from.

Miranda, I.; Pereira, H. 2015. Variation of wood and bark density and production in coppiced Eucalyptus globulus trees in a second rotation. iForest 9(2): 270-275.

Morel, H.; Lehnebach, R.; Cigna, J.; Ruelle; J.; Nicolini, E.; Beauchêne, J. 2018. Basic wood density variations of Parkia velutina Benoist, a long-lived heliophilic Neotropical rainforest tree. Bois et Forets du Trop 335(1): 59-69.

Nabais, C.; Hansen, J.K.; David-Schwartz, R.; Klisz, M.; López, R.; Rozenberg, P. 2018. The effect of climate on wood density: What provenance trials tell us? For Ecol Manag 408: 148–156.

Nock, C.A.; Geihofer, D.; Grabner, M.; Baker, P.J.; Bunyavejchewin, S.; Hietz, P. 2009. Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand. Ann Bot 104(2): 297–306.

Oddi, F.J.; Miguez, F.E.; Ghermandi, L.; Bianchi, L.O.; Garibaldi, L.A. 2019. A nonlinear mixed‐effects modeling approach for ecological data: Using temporal dynamics of vegetation moisture as an example. Ecol Evol 9(18): 10225–10240.

Pérez-Peña, N.; Elustondo, D.M.; Valenzuela, L.; Ananías, R.A. 2020. Variation of perpendicular compressive strength properties related to anatomical structure and density in Eucalyptus nitens green specimens. Bioresources 15(1): 987 – 1000.

Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. 2018. nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1-137.

Quilhó, T.; Pereira, H. 2001. Within and between-tree variation of bark content and wood density of Eucalyptus globulus in commercial plantations. IAWA J 22(3): 255-65.

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Ramananantoandro, T.; Ramanakoto, M.F.; Rajoelison, G.L.; Randriamboavonjy, J.C.; Rafidimanantsoa, H.P. 2016. Influence of tree species, tree diameter and soil types on wood density and its radial variation in a mid-altitude rainforest in Madagascar. Ann For Sci 73: 1113–1124.

Roque, R.M.; Fo, M.T. 2007. Wood density and fiber dimensions of Gmelina arborea in fast growth trees in Costa Rica: relation to the growth rate. For Syst 16(3): 267-76.

Rybníček, M.; Koňasoá, E.; Koňas, P.; Kolář, T. 2012. The decrease in basic density of spruce (Picea abies (l.) karst.) in the past thirty years. Wood Res 57(4): 531–544.

Silva, J.P.M.; Fernandes, M.R.deM.; Gonçalves, A.F.A.; Lopes, I.L.; Silva, G.F.; Cabacinha, C.D. 2019. Estimation of the basic wood density of native species using mixed linear models. Floresta e Ambient 26(1): e20180387.

Tandjiekpon, A.M.; Dah-Dovonon, J.Z. 1997. Régénération naturelle par rejet de souche de Acacia auriculiformis A. Cunn. ex Benth. Bulletin de la Recherche Agronomique, 20 : 18-31.

Tonouéwa, J.F.M.F.; Assédé, E.P.S.; Biaou, S.S.H.; Natta, A.K. 2019. Facteurs déterminant la productivité et la séquestration de carbone de Acacia auriculiformis A. Cunningham ex Benth au Bénin. Bois et Forets des Trop 342(4): 17-28.

Tonouéwa, J.F.M.F.; Langbour, P.; Biaou, S.S.H.; Assédé, E.P.S.; Guibal, D.; Kouchadé, C.A.; Kounouhewa, B.B. 2020. Anatomical and physico-mechanical properties of Acacia auriculiformis wood in relation to age and soil in Benin, West Africa. Holz als Roh- und Werkstoff 78(4): 745 – 756.

The Unscrambler. 2007. The Unscrambler User’s Guide: ver. 9.7. Woodbridge: CAMO Software AS.

Wang, T.; Aitken, S.N.; Rozenber, G.P.; Millie, F. 2000. Selection for improved growth and wood density in lodgepole pine: effects on radial patterns of wood variation. Wood Fiber Sci 32(4): 391 – 403.

Wickneswari, R.; Norwati, M. 1993. Genetic diversity of natural-populations of Acacia auriculiformis. Aust J Bot 41(1):65–77.

Wiersum, K.F.; Ramlan, A. 1982. Cultivation of Acacia auriculiformis on Jaya, Indonesia. Commonw For Rev 62(2): 135-144.

Zhang, S.Y.; Morgenstern, E.K. 1995. Genetic variation and inheritance of wood density in black spruce (Picea mariana) and its relationship with growth: implications for tree breeding. Wood Sci Technol 30(1): 63-75.

Zobel, B.J.; Van Buijtenen, J.P. 1989. Wood variation: its causes and control. Springer-Verlag, Berlin, Heidelberg, New York.




How to Cite

Murielle Féty Tonouewa, J. F. ., Honoré Biaou, S. S. ., Pélagie Assede, E. S. ., Langbour, P. ., & Rodrigue Balagueman, O. . (2022). Influence of growth parameters on wood density of Acacia auriculiformis. Maderas. Ciencia Y Tecnología, 24, 1–14.