Formaldehyde free tannin-based adhesive with epoxy as hardener for plywood

Authors

  • Bowen Liu
  • Yunxia Zhou
  • Hisham Essawy
  • Qian Chen
  • Jiankun Liang
  • Xiaojian Zhou
  • Jun Zhang
  • Guanben Du

DOI:

https://doi.org/10.4067/s0718-221x2022000100433

Keywords:

Cross-linking, EPR, furfural, furfuryl alcohol, tannin-based adhesive

Abstract

A renewable tannin-based resin adhesive with enhanced bonding strength, good water resistance and long storage life has been prepared based on tannin, furfural and furfuryl alcohol coming from forest and agricultural products. Fourier transform infrared spectroscopy (FT-IR), Electrospray ionization mass spectroscopy (ESI-MS) and Differential scanning calorimetry (DSC) indicated that furfuryl alcohol and furfural can react with tannin under acidic conditions, with the involvement of –CH2–O– groups in the cross-linking of tannin-furfuryl alcohol-furfural resin (TFF) adhesive. The gel time of TFF was longer than that of tannin-furfural resin (TF), while the shear strength of TFF-bonded plywood suggested that the cured TFF adhesive acquired a performance superior to that of tannin (T) and TF adhesives. Furthermore, water resistance of TFF adhesive could be further enhanced with respect to T and TF adhesives through cross-linking with 3 % epoxy resin (EPR).

Downloads

Download data is not yet available.

References

Abdullah, U.; Pizzi, A. 2013. Tannin-furfuryl alcohol wood panel adhesives without formaldehyde. Eur J Wood Wood Prod 17: 131-132. https://doi.org/10.1007/s00107-012-0629-4

Celzard, A.; Zhao, W.; Pizzi, A.; Fierroa, V. 2010. Mechanical properties of tannin-based rigid foams undergoing compression. Mat Sci Eng A 527(16-17): 4438-4446. https://doi.org/10.1016/j.msea.2010.03.091

Guigo, N.; Mija, A.; Vincent, L.; Sbirrazzuoli, N. 2007. Chemorheological analysis and model-free kinetics of acid catalysed furfuryl alcohol polymerization. Phys Chem Chem Phys 39: 5359-5366. https://doi.org/10.1039/B707950H

Huang, X.; Chen, S.B.; Wan, S.H.; Niu, B.; He, X.R.; Zhang, R. 2020. Effect of phenolic resin oligomer motion ability on energy dissipation of poly (butyl methacrylate)/phenolic resins composites. Polymers 12(2): 490. https://doi.org/10.3390/polym12020490

Lacoste, C.; Basso, M.C.; Pizzi, A.; Laborie, M.; Garcia, D.; Celzard, A. 2013. Bioresourcedpinetannin/furanic foams with glyoxal and glutaraldehyde. Ind Crops Prod 45: 401-405. https://doi.org/10.1016/j.indcrop.2012.12.032

Lacoste, C.; Pizzi, A.; Laborie, M.; Celzard, A. 2014. Pinus pinaster tannin/furanic foams: Part II. Physical properties. Ind Crops Prod 61: 531-536. https://doi.org/10.1016/j.indcrop.2014.04.034

Lagel, M.C.; Pizzi, A.; Basso, M.; Abdalla, S. 2014. Development and characterization of abrasive grinding wheels with a tannin-furanic resins matrix. Ind Crops Prod 65: 343-348. https://doi.org/10.1016/j.indcrop.2014.11.020

Lagel, M.C.; Zhang, J.; Pizzi, A. 2015. Cutting and grinding wheels for angle grinders with a bioresin matrix. Ind Crops Prod 67: 264-269. https://doi.org/10.1016/j.indcrop.2015.01.046

Lengowski, E.C.; Júnior, E.A.B.; Dallo, R.; Nisgoski, S.; Prata, J.G. 2021. Nanocellulose-reinforced phenol-formaldehyde resin for plywood panel production. Maderas-Cienc Tecnol 23(1). http://dx.doi.org/10.4067/s0718-221x2021000100405

Li, J.X.; Zhang, J.; Zhou, Y.X.; Zhou, Z.L.; Essawy, H.; Zhou, X.J.; Du, G.B. 2020. Preparation of an Abrasive Grinding Wheel Based on Tannin Resin Cross Linked by Furfuryl Alcohol, Urea and Glyoxal. Renew Mat 8(9): 1019-1032. https://doi.org/10.32604/jrm.2020.012374

Li, X.J.; Nicollin, A.; Pizzi, A.; Zhou, X.; Sauget, A.; Delmotte, L. 2013. Natural tannin-furanic thermosetting moulding plastics. RSC Adv 3(39): 17732-17740. https://doi.org/10.1039/C3RA43095B

Liang, J.K.; Wu, Z.G.; Lei, H.; Xi, X.D.; Li, T.H.; Du, G.B. 2017. The Reaction between Furfuryl Alcohol and Model Compound of Protein. Polymers 9(12): 711. https://doi.org/10.3390/polym9120711

Liang, J.K.; Wu, Z.G.; Xi, X.D.; Lei, H.; Zhang, B.G.; Du, G.B. 2019. Investigation of the reaction between a soy‑based protein model compound and formaldehyde. Wood Sci Technol 53(5): 1061-1077. https://doi.org/10.1007/s00226-019-01118-8

Moubarik, A.; Allal, A.; Pizzi, A.; Charrier, F.; Charrier, B. 2010. Preparation and mechanical characterization of particleboard made from maritime pine and glued with bio-adhesives based on cornstarch and tannins. Maderas-Cienc Tecnol 12(3): 187-197. http://dx.doi.org/10.4067/S0718-221X2010000300004

Nicolao, E.S.; Monteoliva, S.; Ciannamea, E.M.; Stefani, P. 2022. Plywoods of northeast Argentinian woods and soybean protein-based adhesives: Relationship between morphological aspects of veneers and shear strength values. Maderas-Cienc Tecnol 24(3). http://dx.doi.org/10.4067/s0718-221x2022000100403

Pasch, H.; Pizzi, A.; Rode, K. 2001. MALDI-TOF mass spectrometry of polyflavonoid tannins. Polymer 42(18): 7531-7539. https://doi.org/10.1016/S0032-3861(01)00216-6

Pizzi, A. 1994. Advanced wood adhesives technology. Marcel dekker, New York. https://doi.org/10.1002/pi.1996.210390117

Pizzi, A.; Vosloo, R.; Cameron, F.A.; Orovan, E. 1986. Self-neutralizing acid-set PF wood adhesives. HolzRoh-Werkst 44: 229-234. https://doi.org/10.1007/BF02612001

Raknes, E. 1997. Durability of structural wood adhesives after 30 years ageing. HolzRoh-Werkst 55: 83-90. https://doi.org/10.1007/BF02990523

Sauget, A.; Zhou, X.J.; Pizzi, A. 2014. Tannin-resorcinol-formaldehyde resin and flax fiber biocomposites. Renew Mat 3: 173-181. https://doi.org/10.7569/JRM.2013.634128

Sun, S.L.; Cao, X.F.; Li, H.L.; Zhu, Y.B.; Li, Y.J.; Jiang, W.; Wang, Y.; Sun, S.N. 2020. Simultaneous and efficient production of furfural and subsequent glucose in MTHF/H2O biphasic system via parameter regulation. Polymers 12(3): 557. https://doi.org/10.3390/polym12030557

Sweygers, N.; Harrer, J.; Dewil, R.; Appels, L.A. 2018. A microwave-assisted process for the in-situ production of 5-hydroxymethyl furfural and furfural from lignocellulosic polysaccharides in a biphasic reaction system. Clean Prod 187: 1014-1024. https://doi.org/10.1016/j.jclepro.2018.03.204

Yaghmur, A.; Aserin, A.; Garti, N. 2002. Furfural−cysteine model reaction in food grade nonionic oil/water microemulsions for selective flavor formation. Agric Food Chem 50(10): 2878-2883. https://doi.org/10.1021/jf011158l

Zhang, J.F.; Koubaa, A.; Xing, D.; Liu, W.Y.; Wang, Q.W.; Wang, X.M.; Wang, H.G. 2020. Improving lignocellulose thermal stability by chemical modification with boric acid for incorporating into polyamide. Mater Design 19: 108589. https://doi.org/10.1016/j.matdes.2020.108589

Zhang, J.; Liu, B.W.; Zhou, Y.X.; Essawy, H.; Chen, Q.; Zhou, X.J.; Du, G.B. 2021. Preparation of a starch-based adhesive cross-linked with furfural, furfuryl alcohol and EPR. Int J Adhes Adhes 110: 102958. https://doi.org/10.1016/j.ijadhadh.2021.102958

Zhang, J.; Liu, B.; Zhou,Y.; Essawy, H.; Li, J.X.; Chen, Q.; Zhou, X.J.; Du, G.B. 2021. Preparation and performance of tannin-glyoxal-urea resin-bonded grinding wheel loaded with SiO2 reinforcing particles. Maderas-Cienc Tecnol 48(23): 1-16. http://dx.doi.org/10.4067/s0718-221x2021000100448

Zhang, J.; Xi, X.D; Liang, J.K; Pizzi, A.; Du, G.B.; Deng S.D. 2019a. Tannin-based adhesive cross-linked by furfuryl alcohol–glyoxal and EPRs. Int J Adhes Adhes 94: 47-52. http://dx.doi.org/10.1016/j.ijadhadh.2019.04.012

Zhang, J.; Xiong, L.H.; Zhou, X.J.; Du, G.B.; Liang, J.K.; Xi, X.D. 2019b. Development of mimosa tannin-based adhesive cross-linked by furfuryl alcohol-formaldehyde and EPRs. Wood research 64(5): 847-858.

Zhou, X. J.; Li, B.; Xu, Y.; Essawy, H.; Wu, Z.G.; Du, G.B. 2019. Tannin-furanic resin foam reinforced with cellulose nanofibers (CNF). Ind Crops Prod 134: 107-112. https://doi.org/10.1016/j.indcrop.2019.03.052

Downloads

Published

2022-03-29

How to Cite

Liu, B., Zhou, Y. ., Essawy, H. ., Chen, Q. ., Liang, J. ., Zhou, X. ., Zhang, J. ., & Du, G. (2022). Formaldehyde free tannin-based adhesive with epoxy as hardener for plywood. Maderas. Ciencia Y Tecnología, 24, 1–18. https://doi.org/10.4067/s0718-221x2022000100433

Issue

Section

Article