Analysis of biochars produced from the gasification of pinus patula pellets and chips as soil amendments
DOI:
https://doi.org/10.4067/s0718-221x2022000100449Keywords:
Byproduct valorization, fixed-bed reactor, gasification biochar, soil amendment, wood biomassAbstract
In this work, biochar (BC), a co-product of the fixed bed gasification process of Pinus patula wood pellets (PL) and chips (CH), was characterized as soil amendment. The physicochemical properties and the mineral content of the pellet’s biochar (PL-BC) and the chips biochar (CH-BC) were analyzed following the NTC5167 Colombian technical standard. The BET surface area values of the BCs were 367,33 m2/g and 233,56 m2/g for the PL-BC and the CH-BC, respectively, and the pore volume was 0,20 cm3/g for the PL-BC and 0,13 cm3/g for the CH-BC. These characteristics favor the increase of the BCs water-holding capacity (WHC). Properties such as the pH (8,8-9,0), the WHC (219 % - 186,4 %), the total organic carbon (33,8 % - 23,9 %), the metalloid presence (Ca, Mg, K, Mn, Al, Si, and Fe), and the ash (1,92 wt% - 2,74 wt%) and moisture contents (11,13 wt% - 11,63 wt%) for both BCs were found to be within the limits set by the NTC5167 standard. Furthermore, the presence of micro and macronutrients, such as Fe and phosphorus (P), and the alkaline pH, make possible the use of these BCs as amendments for acid soils.
Downloads
References
Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Mahmood, A.; Zia-ur-Rehman, M.; Ibrahim, M.; Arshad, M.; Qayyum, M.F. 2018. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf 148: 825–833. https://doi.org/10.1016/j.ecoenv.2017.11.063
Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99: 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071
Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131: 374–379. https://doi.org/10.1016/j.biortech.2012.12.165
Almaroai, Y.A.; Usman, A.R.A.; Ahmad, M.; Moon, D.H.; Cho, J.S.; Joo, Y.K.; Jeon, C.; Lee, S.S.; Ok, Y.S. 2014. Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environ Earth Sci 71(3): 1289–1296. https://doi.org/10.1007/s12665-013-2533-6
American Society for Testing and Materials. 2008. ASTM D5373-08: Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal. ASTM. West Conshohocken, PA, USA. https://www.astm.org/DATABASE.CART/HISTORICAL/D5373-08.htm
Baptista, I.; Miranda, I.; Quilhó, T.; Gominho, J.; Pereira, H. 2013. Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Ind Crops Prod 50: 166–175. https://doi.org/10.1016/j.indcrop.2013.07.004
Bayu, D.; Dejene, A.; Alemayehu, R.; Gezahegn, B. 2017. Improving available phosphorus in acidic soil using biochar. J Soil Sci Environ Manag 8(4): 87–94. https://doi.org/10.5897/jssem2015.0540
Blume, H; Brümmer, G.W; Fleige, H; Horn, R; Kandeler, E; Kögel-knabner, I; Kretzschmar, R; Stahr, K; Wilke, B. 2016. Soil Science 16th ed. Springer. https://doi.org/10.1007/978-3-642-30942-7
Brewer, C.E.; Unger, R.; Schmidt-Rohr, K.; Brown, R.C. 2011. Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res 4(4): 312–323. https://doi.org/10.1007/s12155-011-9133-7
Buss, W.; Shepherd, J.G.; Heal, K.V.; Mašek, O. 2018. Spatial and temporal microscale pH change at the soil-biochar interface. Geoderma 331: 50–52. https://doi.org/10.1016/j.geoderma.2018.06.016
Detmann, K.C.; Araújo, W.L.; Martins, S.C.V.; Sanglard, L.M.V.P.; Reis, J.V.; Detmann, E.; Rodrigues, F.Á.; Nunes-Nesi, A.; Fernie, A.R.; Damatta, F.M. 2012. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196(3): 752-762. https://doi.org/10.1111/j.1469-8137.2012.04299.x
Díez, H.E.; Pérez, J.F. 2019. Effects of wood biomass type and airflow rate on fuel and soil amendment properties of biochar produced in a top-lit updraft gasifier. Environ Prog Sustain Energy 38(4): 1–14. https://doi.org/10.1002/ep.13105
Díez, H.E.; Pérez, J.F. 2017. Physicochemical characterization of representative firewood species used for cooking in some Colombian regions. Int J Chem Eng 2017: 1–13. https://doi.org/10.1155/2017/4531686
Dunnigan, L.; Morton, B.J.; Ashman, P.J.; Zhang, X.; Kwong, C.W. 2018. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes. Waste Manag 77: 59–66. https://doi.org/10.1016/j.wasman.2018.05.004
European Biochar Certificate. EBC. 2019. European Biochar Certificate - Guidelines for a Sustainable Production of Biochar. Eur Biochar Found, Arbaz, Switzerland.. https://doi.org/10.13140/RG.2.1.4658.7043
Fang, Q.; Chen, B.; Lin, Y.; Guan, Y. 2014. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48(1): 279–288. https://doi.org/10.1021/es403711y
Food and Agriculture Organization of the United Nations. FAO. 2019. FAOSTAT - Forestry production and trade. http://www.fao.org/faostat/en/#data/FO/visualize (accessed 4.14.20).
Fischer, B.M.C.; Manzoni, S.; Morillas, L.; Garcia, M.; Johnson, M.S.; Lyon, S.W. 2019. Improving agricultural water use efficiency with biochar – A synthesis of biochar effects on water storage and fluxes across scales. Sci Total Environ 657: 853-862. https://doi.org/10.1016/j.scitotenv.2018.11.312
Godlewska, P.; Ok, Y.S.; Oleszczuk, P. 2021. The dark side of black gold: Ecotoxicological aspects of biochar and biochar-amended soils. J Hazard Mater 403: 123833. https://doi.org/10.1016/j.jhazmat.2020.123833
Gomez-Eyles, J.L.; Beesley, L.; Moreno-Jiménez, E.; Ghosh, U.; Sizmur, T. 2013. The potential of biochar amendments to remediate contaminated soils. In Biochar and Soil Biota. Ladygina, N.; Rineau, F. (Eds.). Chapter 4. CRC Press https://doi.org/10.13140/2.1.1074.9448
González, W.A.; López, D.; Pérez, J.F. 2020. Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders. Renew Energy 147: 1139–1150. https://doi.org/10.1016/j.renene.2019.09.094
González, W.A.; Pérez, J.F. 2019. CFD analysis and characterization of biochar produced via fixed-bed gasification of fallen leaf pellets. Energy 186(2019): 115904. https://doi.org/10.1016/j.energy.2019.115904
González, W.A.; Pérez, J.F.; Chapela, S.; Porteiro, J. 2018. Numerical analysis of wood biomass packing factor in a fixed-bed gasification process. Renew Energy 121: 579–589. https://doi.org/10.1016/j.renene.2018.01.057
Gunarathne, V.; Senadeera, A.; Gunarathne, U.; Biswas, J.K.; Almaroai, Y.A.; Vithanage, M. 2020. Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil. Biochar 2(1): 107–120. https://doi.org/10.1007/s42773-020-00036-4
Gutiérrez, J.; Rubio-Clemente, A.; Pérez, J.F. 2021. Effect of main solid biomass commodities of patula pine on biochar properties produced under gasification conditions. Ind Crops Prod 160(2021): 113123. https://doi.org/10.1016/j.indcrop.2020.113123
Hansen, V.; Müller-Stöver, D.; Ahrenfeldt, J.; Holm, J.K.; Henriksen, U.B.; Hauggaard-Nielsen, H. 2015. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenerg 72(1): 300–308. https://doi.org/10.1016/j.biombioe.2014.10.013
Hernández, J.J.; Lapuerta, M.; Monedero, E. 2016. Characterisation of residual char from biomass gasification: effect of the gasifier operating conditions. J Clean Prod 138: 83–93. https://doi.org/10.1016/j.jclepro.2016.05.120
Instituto Colombiano de Normas Técnicas y Certificación. ICONTEC. 2011. Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo - NTC 5167 Standard (In Spanish). Bogotá, Colombia. https://tienda.icontec.org/gp-productos-para-la-industria-agricola-productos-organicos-usados-como-abonos-o-fertilizantes-y-enmiendas-o-acondicionadores-de-suelo-ntc5167-2011.html
Instituto Nacional de Salud. INS. 2019. Carga de enfermedad ambiental en Colombia (In Spanish). Observatorio Nacional de Salud, Bogotá, Colombia. https://www.ins.gov.co/Direcciones/ONS/Resumenes%20Ejecutivos/Resumen%20ejecutivo%20informe10%20Carga%20de%20enfermedad%20en%20Colombia.pdf (accessed 9.30.19).
International Biochar Initiative. 2019. What is biochar? https://biochar-international.org/biochar-in-developing-countries/ (accessed 6.3.19).
Kamal Baharin, N.S.; Koesoemadinata, V.C.; Nakamura, S.; Azman, N.F.; Muhammad Yuzir, M.A.; Md Akhir, F.N.; Iwamoto, K.; Yahya, W.J.; Othman, N.; Ida, T.; Hara, H. 2020. Production of Bio-Coke from spent mushroom substrate for a sustainable solid fuel. Biomass Convers Biorefin https://doi.org/10.1007/s13399-020-00844-5
Keiluweit, M.; Nico, P.S.; Johnson, M.; Kleber, M. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4): 1247–1253. https://doi.org/10.1021/es9031419
Lee, J.W.; Kidder, M.; Evans, B.R.; Paik, S.; Buchanan, A.C.; Garten, C.T.; Brown, R.C. 2010. Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20): 7970–7974. https://doi.org/10.1021/es101337x
Lim, J.E.; Ahmad, M.; Usman, A.R.A.; Lee, S.S.; Jeon, W.T.; Oh, S.E.; Yang, J.E.; Ok, Y.S. 2013. Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environ Earth Sci 69(1): 11–20. https://doi.org/10.1007/s12665-012-1929-z
Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. 2012. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91(1): 147–154. https://doi.org/10.1016/j.fuel.2011.07.019
Mia, S.; Uddin, N.; Al Mamun Hossain, S.A.; Amin, R.; Mete, F.Z.; Hiemstra, T. 2015. Production of Biochar for Soil Application: A Comparative Study of Three Kiln Models. Pedosphere 25(5): 696–702. https://doi.org/10.1016/S1002-0160(15)30050-3
Ministerio de Agricultura y Desarrollo Rural. Minagricultura. 2015. Colombia tiene un potencial forestal de 24 millones de hectáreas para explotación comercial (In Spanish). Bogotá, Colombia. https://www.minagricultura.gov.co/noticias/Paginas/Colombia-tiene-un-potencial-forestal.aspx (accessed 4.14.20).
Nanda, S.; Mohanty, P.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. 2013. Characterization of North American lignocellulosic biomass and biochars in terms of their Candidacy for alternate renewable fuels. Bioenergy Res 6(2): 663–677. https://doi.org/10.1007/s12155-012-9281-4
Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.; Steiner, C.; Das, K.; Ahmedna, M.; Rehrah, D.; Watts, D.; Busscher, W.; Schomberg, H. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3(1): 195–206. https://openjournals.neu.edu/aes/journal/article/view/v3art5/v3p195-206
Nsamba, H.K.; Hale, S.E.; Cornelissen, G.; Bachmann, R.T. 2015. Designing and Performance Evaluation of Biochar Production in a Top-Lit Updraft Up-scaled Gasifier. J Sustain Bioenergy Syst 5(2): 41–55. https://doi.org/10.4236/jsbs.2015.52004
Ok, Y; Uchimiya, S; Chang, S; Bolan, N. 2016. Biochar: production, characterization, and applications. 1st ed. CRC Press Taylor & Francis Group. https://doi.org/10.1201/b18920
Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G. 2014. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth 5(1): 65–75. https://doi.org/10.5194/se-5-65-2014
Pérez, J.F.; Pelaez-Samaniego, M.R.; Garcia-Perez, M. 2019. Torrefaction of fast-growing Colombian wood species. Waste Biomass Valorization 10(6): 1655–1667. https://doi.org/10.1007/s12649-017-0164-y
Pérez, J.F; Ramírez, G.L. 2019. Aplicaciones agroenergéticas con maderas cultivadas y oportunidades preliminares de mercado (In Spanish), 1st ed. ed, Editorial Universidad de Antioquia. http://bibliotecadigital.udea.edu.co/handle/10495/10959
Protásio, T. de P.; Bufalino, L.; Denzin, G.H.; Junior, M.G.; Trugilho, P.F.; Mendes, L.M. 2013. Brazilian lignocellulosic wastes for bioenergy production: Characterization and comparison with fossil fuels. BioResources 8(1): 1166–1185. https://doi.org/10.15376/biores.8.1.1166-1185
Qian, K.; Kumar, A.; Patil, K.; Bellmer, D.; Wang, D.; Yuan, W.; Huhnke, R.L. 2013. Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies 6(8): 3972–3986. https://doi.org/10.3390/en6083972
Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. 2015. Recent advances in utilization of biochar. Renew Sustain Energy Rev 42: 1055–1064. https://doi.org/10.1016/j.rser.2014.10.074
Ramos-Carmona, S.; Pérez, J.F.; Pelaez-Samaniego, M.R.; Barrera, R.; Garcia-Perez, M. 2017. Effect of torrefaction temperature on properties of patula pine. Maderas-Cienc Tecnol 19(1): 39–50. https://doi.org/10.4067/S0718-221X2017005000004
De la Rosa, J.M.; Paneque, M.; Hilber, I.; Blum, F.; Knicker, H.E.; Bucheli, T.D. 2016. Assessment of polycyclic aromatic hydrocarbons in biochar and biochar-amended agricultural soil from Southern Spain. J Soils Sediments 16(2): 557-565. https://doi.org/10.1007/s11368-015-1250-z
Singh, B.P.; Cowie, A.L.; Smernik, R.J. 2012. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46(21): 11770–11778. https://doi.org/10.1021/es302545b
Sohi, S.P. 2012. Carbon storage with benefits. Science 338(6110): 1034–1035. https://doi.org/10.1126/science.1225987
Tanure, M.M.C.; da Costa, L.M.; Huiz, H.A.; Fernandes, R.B.A.; Cecon, P.R.; Pereira Junior, J.D.; da Luz, J.M.R. 2019. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Tillage Res 192: 164-173. https://doi.org/10.1016/j.still.2019.05.007
Trigo, C.; Cox, L.; Spokas, K. 2016. Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents. Sci Total Environ 566–567: 1454–1464. https://doi.org/10.1016/j.scitotenv.2016.06.027
Vamvuka, D.; Pitharoulis, M.; Alevizos, G.; Repouskou, E.; Pentari, D. 2009. Ash effects during combustion of lignite/biomass blends in fluidized bed. Renew Energy 34(12): 2662–2671. https://doi.org/10.1016/j.renene.2009.05.005
van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1): 235–246. https://doi.org/10.1007/s11104-009-0050-x
Wang, X.; Chi, Q.; Liu, X.; Wang, Y. 2019. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge. Chemosphere 216: 698-706. https://doi.org/10.1016/j.chemosphere.2018.10.189
Wang, Y.; Yin, R.; Liu, R. 2014. Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. J Anal Appl Pyrolysis 110(1): 375–381. https://doi.org/10.1016/j.jaap.2014.10.006
Yang, X.B.; Ying, G.G.; Peng, P.A.; Wang, L.; Zhao, J.L.; Zhang, L.J.; Yuan, P.; He, H.P. 2010. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem 58(13): 7915–7921. https://doi.org/10.1021/jf1011352
Yu, O.Y.; Harper, M.; Hoepfl, M.; Domermuth, D. 2017. Characterization of biochar and its effects on the water holding capacity of loamy sand soil: Comparison of hemlock biochar and switchblade grass biochar characteristics. Environ Prog Sustain Energy 36(5): 1474-1479. https://doi.org/10.1002/ep.12592
Zhang, Y.; Wang, J.; Feng, Y. 2021. The effects of biochar addition on soil physicochemical properties: A review. Catena 202(October 2020): 105284. https://doi.org/10.1016/j.catena.2021.105284
Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. 2018. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174: 977–987. https://doi.org/10.1016/j.jclepro.2017.11.013
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.