Deep eutectic solvent pulping from sorghum stalks

Authors

  • Sezgin Koray Gülsoy
  • Aysun Küçüle
  • Ayhan Gençer

DOI:

https://doi.org/10.4067/s0718-221x2022000100450

Keywords:

Choline chloride, deep eutectic solvent, ethylene glycol, green chemistry, pulp, sorghum

Abstract

Deep eutectic solvents are characterized as natural, green, biodegradable, non-flammable, non-volatile, non-toxic, odorless, colorless, easy to prepare, and easy to recycle after use. They present an opportunity to introduce new techniques for the pulping process. This study investigated the possibility of using a green deep eutectic solvents from sorghum stalks for pulp and paper production. Choline chloride/ethylene glycol was used in the preparation of eutectic mixtures in molar ratios of 4/10, 5/10, and 6/10. These eutectic mixtures were then applied as cooking liquor to sorghum stalks at two different cooking times (140 and 160 minutes). In addition, the traditional pulping methods of soda and kraft cookings were carried out using sorghum stalks and the pulps were compared with the deep eutectic solvents pulps. The results showed that the pulp production using deep eutectic solvents was accomplished successfully. Some properties of deep eutectic solvents pulps were comparable to those of the soda and kraft pulps. deep eutectic solvents can play an essential role in cleaner pulp production.

Downloads

Download data is not yet available.

References

Abougor, H. 2014. Utilization of deep eutectic solvent as a pretreatment option for lignocellulosic biomass. PhD Thesis, Tennessee Technological University, USA. https://search.proquest.com/dissertations-theses/utilization-deep-eutectic-solvent-as-pretreatment/docview/1627186715/se-2?accountid=51245

Albert, S.; Padhiar, A.; Gandhi, D. 2011. Fiber properties of Sorghum halepense and its suitability for paper production. J Nat Fibers 8(4): 263-271. https://doi.org/10.1080/15440478.2011.626236

Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X. 2016. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18(19): 5133-5141. https://doi.org/10.1039/C6GC01007E.

Atchison, J.E. 1995. Twenty-five years of global progress in non-wood plant fibre pulping –historical highlights, present status and future prospects. Tappi Proceedings of the 1995 Pulping Conference (Book 1); Tappi Press, Atlanta, GA, USA.

Belayachi, L.; Delmas, M. 1995. Sweet sorghum: A quality raw material for the manufacturing of chemical paper pulp. Biomass Bioenergy 8(6): 411-417. https://doi.org/10.1016/0961-9534(95)00046-1

Berlyn, G.P. 1976. Botanical microtechnique and cytochemistry. Iowa State University Press, Iowa, USA.

Choi, K.H.; Lee, M.K.; Ryu, J.Y. 2016a. Effect of molar ratios of DES on lignin contents and handsheets properties of thermomechanical pulp. J Korea TAPPI 48(2): 28-33. https://doi.org/10.7584/ktappi.2016.48.2.028

Choi, K.H.; Nam, Y.S.; Lee, M.K.; Ryu, J.Y. 2016b. Changes of BCTMP fibers and handsheets properties by the treatment of LB DES at different molar ratios. J Korea TAPPI 48(1): 75-81. https://doi.org/10.7584/ktappi.2016.48.1.075

Fiskari, J.; Ferritsius, R.; Osong, S.H.; Persson, A.; Höglund, T.; Immerzeel, P.; Norgren, M. 2020. Deep eutectic solvent delignification to low-energy mechanical pulp to produce papermaking fibers. BioResources 15(3): 6023-6032. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_15_3_6023_Fiskari_Deep_Eutectic_Solvent_Delignification/7824

Francisco, M.; Van Den Bruinhorst, A.; Kroon, M.C. 2012. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14(8): 2153-2157. https://doi.org/10.1039/C2GC35660K

Gast, D.; Puls, J. 1984. Ethylene glycol-water pulping. Kinetics of delignification. In: Anaerobic Digestion and Carbohydrate Hydrolysis of Waste. G.L.F.; M.P.F.; H.N. (Eds.). Elsevier, London, UK.

Gençer, A,; Şahin, M. 2015. Identifying the conditions required for the NaOH method for producing pulp and paper from sorghum grown in Turkey. BioResources 10(2): 2850-2858. https://bioresources.cnr.ncsu.edu/resources/identifying-the-conditions-required-for-the-naoh-method-for-producing-pulp-and-paper-from-sorghum-grown-in-turkey/

Gençer, A.; Hatıl, C. 2019. Determination of alkali and sulfite ratios in paper pulp produced from sorghum stalks via the kraft method. BioResources 14(1): 922-930. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_1_922_Gencer_Determination_Alkali_Sulfite_Ratios_Paper/6552

González Alriols, M.G.; Tejado, A.; Blanco, M.; Mondragon, I.; Labidi, J. 2009. Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process. Chem Eng J 148: 106-114. https://doi.org/10.1016/j.cej.2008.08.008

Gulsoy, S.K.; Eroglu, H. 2011a. Influence of sodium borohydride on kraft pulping of European black pine as a digester additive. Ind Eng Chem Res 50(4): 2441-2444. https://doi.org/10.1021/ie101999p

Gulsoy, S.K.; Eroglu, H. 2011b. Biokraft pulping of European black pine with Ceriporiopsis subvermispora. Int Biodeterior Biodegradation 65(4): 644-648. https://doi.org/10.1016/j.ibiod.2010.12.013

Gülsoy, S.K.; Hürfikir, Z.; Turgut, B. 2016. Effects of decreasing grammage on the handsheet properties of unbeaten and beaten kraft pulps. Turk J For 17(1): 56-60. https://dergipark.org.tr/en/download/article-file/195897

Han, J.S.; Rowell, J.S. 1997. Chemical composition of agrobased fibers. Chapter 5. In: Paper and Composites from Agrobased Resources. R.M.R.; R.A.Y. (Eds.). CRC Press Inc., New York, USA.

Hou, X.D.; Li, A.L.; Lin, K.P.; Wang, Y.Y.; Kuang, Z.Y.; Cao, S.L. 2018. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Bioresour Technol 249: 261-267. https://doi.org/10.1016/j.biortech.2017.10.019

International Organization for Standardization. 1999. ISO 5267-1: Pulps—Determination of drainability — Part 1: Schopper-Riegler method. ISO. Geneva, Switzerland. https://www.iso.org/standards.html

International Organization for Standardization. 2004. ISO 5269-2: Pulps — Preparation of laboratory sheets for physical testing — Part 2: Rapid-Köthen method. ISO. Geneva, Switzerland. https://www.iso.org/standards.html

International Organization for Standardization. 2005. ISO 1924-3: Paper and board — Determination of tensile properties — Part 3: Constant rate of elongation method (100 mm/min). ISO. Geneva, Switzerland. https://www.iso.org/standards.html

International Organization for Standardization. 2013. ISO 5636-3: Paper and board — Determination of air permeance (medium range) — Part 3: Bendtsen method. ISO. Geneva, Switzerland. https://www.iso.org/standards.html

Jablonský, M.; Škulcová, A.; Kamenská, L.; Vrška, M.; Šima, J. 2015. Deep eutectic solvents: fractionation of wheat straw. BioResources 10(4): 8039-8047. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/viewFile/BioRes_10_4_8039_Jablonsky_Eutectic_Solvents_Wheat_Straw/3920

Jablonsky, M.; Majova, V.; Skulcova, A.; Haz, A. 2018. Delignification of pulp using deep eutectic solvents. J Hyg Eng 22: 76-81. https://keypublishing.org/jhed/wp-content/uploads/2020/07/07.-Full-paper-Michal-Jablonsky.pdf

Jablonsky, M.; Haz, A.; Majova, V. 2019. Assessing the opportunities for applying deep eutectic solvents for fractionation of beech wood and wheat straw. Cellulose 26(13-14): 7675-7684. https://doi.org/10.1007/s10570-019-02629-0

Jiménez, L.; López, F.; Martínez, C. 1993. Paper from sorghum stalks. Holzforschung 47(6): 529-533. https://doi.org/10.1515/hfsg.1993.47.6.529

Jiménez, L.; Rodríguez, A.; Díaz, M.J.; López, F.; Ariza, J. 2004. Organosolv pulping of olive tree trimmings by use of ethylene glycol/soda/water mixtures. Holzforschung 58(2): 122-128. https://doi.org/10.1515/HF.2004.017

Jiménez, L.; Perez, A.; De la Torre, M.J.; Rodríguez, A.; Angulo, V. 2008. Ethyleneglycol pulp from tagasaste. Bioresour Technol 99(7): 2170-2176. https://doi.org/10.1016/j.biortech.2007.05.044

Jiménez, L.; Angulo, V.; Rodríguez, A.; Sánchez, R.; Ferrer, A. 2009. Pulp and paper from vine shoots: Neural fuzzy modeling of ethylene glycol pulping. Bioresour Technol 100(2): 756-762. https://doi.org/10.1016/j.biortech.2008.07.019

Khazaeian, A.; Ashori, A.; Dizaj, M.Y. 2015. Suitability of sorghum stalk fibers for production of particleboard. Carbohydr Polym 120: 15-21. https://doi.org/10.1016/j.carbpol.2014.12.001

Khristova, P.; Gabir, S. 1990. Soda-anthraquinone pulping of sorghum stalks. Biol Wastes 33(4): 243-250. https://doi.org/10.1016/0269-7483(90)90128-F

Kilic-Pekgözlü, A.; Ceylan, E. 2019. Application of DES (deep eutectic solvents) to wood extractives. Wood Ind Eng 1(2): 52-56. https://dergipark.org.tr/en/download/article-file/899805

Kwon, G.J.; Yang, B.S.; Park, C.W.; Bandi, R, Lee, E-A.; Park, J.S.; Han, S.Y.; Kim, N.H.; Lee, S.H. 2020. Treatment effects of choline chloride-based deep eutectic solvent on the chemical composition of red pine (Pinus densiflora). BioResources 15(3): 6457-6470. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/viewFile/BioRes_15_3_6457_Kwon_Treatment_Effects_Choline_Chloride/7861

Li, C.; Huang, C.; Zhao, Y.; Zheng, C.; Su, H.; Zhang, L.; Luo, W.; Zhao, H.; Wang, S.; Huang, L.J. 2021. Effect of choline-based deep eutectic solvent pretreatment on the structure of cellulose and lignin in Bagasse. Processes 9(2): 384. https://doi.org/10.3390/pr9020384

Lim, W.L.; Gunny, A.A.N.; Kasim, F.H.; AlNashef, I.M.; Arbain, D. 2019. Alkaline deep eutectic solvent: a novel green solvent for lignocellulose pulping. Cellulose 26(6): 4085-4098. https://doi.org/10.1007/s10570-019-02346-8

Liu, Q.; Yuan, T.; Fu, Q.J.; Bai, Y.Y.; Peng, F.; Yao, C.L. 2019. Choline chloride-lactic acid deep eutectic solvent for delignification and nanocellulose production of moso bamboo. Cellulose 26: 9447-9462. https://doi.org/10.1007/s10570-019-02726-0.

Majová, V.; Horanová, S.; Škulcová, A.; Šima, J.; Jablonský, M. 2017. Deep eutectic solvent delignification: Impact of initial lignin. BioResources 12(4): 7301-7310. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_4_7301_Majova_Deep_Eutectic_Solvent_Delignification/5517

Nakamura, H.; Takauti, E. 1941. Zellstoffherstellung mittels aethylenglykol. Cellulose Ind 17(3): 19-26. https://doi.org/10.2115/fiber1925.17.en19

Oh, Y.; Park, S.; Jung, D.; Oh, K.K.; Lee, S.H. 2020. Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood. Int J Biol Macromol 165: 187-197. https://doi.org/10.1016/j.ijbiomac.2020.09.145

Pan, M.; Zhao, G.; Ding, C.; Wu, B.; Lian, Z.; Lian, H. 2017. Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohydr Polym 176: 307-314. https://doi.org/10.1016/j.carbpol.2017.08.088

Procentese, A.; Johnson, E.; Orr, V.; Campanile, A.G.; Wood, J.A.; Marzocchella, A.; Rehmann, L. 2015. Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192: 31-36. https://doi.org/10.1016/j.biortech.2015.05.053

Rodríguez, A.; Pérez, A.; de la Torre, M.J.; Ramos, E.; Jiménez, L. 2008. Neural fuzzy model applied to ethylene-glycol pulping of non-wood raw materials. Bioresour Technol 99(5): 965-974. https://doi.org/10.1016/j.biortech.2007.03.007

Rutkowski, J.; Mroz, W.; Surna-Slusarsaka, B.; Perlinska-Sipa, K. 1993. Glycolic delignification of hardwood. In Progress 93 Conference Proceedings Vol. 1. pp. 190-205.

Saeed, H.A.; Liu, Y.; Lucia, L.A.; Chen, H. 2017. Evaluation of Sudanese sorghum and bagasse as a pulp and paper feedstock. BioResources 12(3): 5212-5222. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_3_5212_Saeed_Sudanese_Sorghum_Bagasse_Pulp/5344

Scandinavian Pulp, Paper and Board Testing Committee. 1962. SCAN-CM 15-62: Viscosity of cellulose in cupriethylenediamine solution (CED). SCAN. Stockholm, Sweden. https://uia.org/s/or/en/1100045703

Skulcova, A.; Majova, V.; Kohutova, M.; Grosik, M.; Sima, J.; Jablonsky, M. 2017. UV/Vis Spectrometry as a quantification tool for lignin solubilized in deep eutectic solvents. BioResources 12(3): 6713-6722. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_3_6713_Skulcova_Spectrometry_Quantification_Lignin/5464

Smink, D.; Juan, A.; Schuur, B.; Kersten, S.R. 2019. Understanding the role of choline chloride in deep eutectic solvents used for biomass delignification. Ind Eng Chem Res 58(36): 16348-16357. https://doi.org/10.1021/acs.iecr.9b03588

Soto-Salcido, L.A.; Anugwom, I.; Ballinas-Casarrubias, L.; Mänttäri, M.; Kallioinen, M. 2020. NADES-based fractionation of biomass to produce raw material for the preparation of cellulose acetates. Cellulose 27: 6831–6848. https://doi.org/10.1007/s10570-020-03251-1

Spearin, W.E.; Isenberg, I.H. 1947. Maceration of woody tissue with acetic acid and sodium chlorite. Science 105(2721): 214-214. https://www.science.org/doi/10.1126/science.105.2721.214.a

Suopajärvi, T.; Ricci, P.; Karvonen, V.; Ottolina, G.; Liimatainen, H. 2020. Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Ind Crops Prod 145: 111956. https://doi.org/10.1016/j.indcrop.2019.111956

Škulcová, A.; Jablonský, M.; Ház, A.; Vrška, M. 2016. Pretreatment of wheat straw using deep eutectic solvents and ultrasound. Przeglad Pap 72(4): 243-247. https://doi.org/10.15199/54.2016.4.2

Škulcová, A.; Majová, V.; Šima, J.; Jablonský, M. 2017. Mechanical properties of pulp delignified by deep eutectic solvents. BioResources 12(4): 7479-7486. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_4_7479_Skulcova_Pulp_Delignified_Eutectic_Solvents/5532

Technical Association of the Pulp & Paper Industry. 2002. TAPPI T 257 cm-02: Sampling and preparing wood for analysis. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 2002. TAPPI T 222 om-02: Acid-insoluble lignin in wood and pulp. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 1997. TAPPI T 204 cm-97: Solvent extractives of wood and pulp. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 2002. TAPPI T 212 om-02: One percent sodium hydroxide solubility of wood and pulp. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 1999. TAPPI T 207 cm-99: Water solubility of wood and pulp. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 2002. TAPPI T 275 sp-02: Screening of pulp (Somerville-type equipment). TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 2015. TAPPI T 200 sp-15: Laboratory Beating of Pulp (Valley Beater Method). TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 1999. TAPPI T 236 om-99: Kappa number of pulp. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 2003. TAPPI T 210 cm-03: Sampling and testing wood pulp shipments for moisture. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 2003. TAPPI T 402 sp-03: Standard conditioning and testing atmospheres for paper, board, pulp handsheets, and related products. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 2002. TAPPI T 402 om-02: Bursting strength of paper. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 1998. TAPPI T 414 om-98: Internal tearing resistance of paper (Elmendorf-type method). TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 2002. TAPPI T 525 om-02: Diffuse brightness of pulp. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 2002. TAPPI T 519 om-02: Diffuse opacity of pulp. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Technical Association of the Pulp & Paper Industry. 2001. TAPPI T 220 sp-01: Physical testing of pulp handsheets. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org

Uraki, Y.; Sano, Y. 1999. Polyhydric alcohol pulping at atmospheric pressure: An effective method for organosolv pulping of softwoods. Holzforschung 53(4): 411-415. https://doi.org/10.1515/HF.1999.068

Wise, L.E.; Karl, H.L. 1962. Cellulose and hemicellulose in pulp and paper science and technology. McGraw Hill Book Co., New York, USA.

Yiin, C.L.; Quitain, A.T.; Yusup, S.; Sasaki, M.; Uemura, Y.; Kida, T. 2016. Characterization of natural low transition temperature mixtures (LTTMs) Green solvents for biomass delignification. Bioresour Technol 199: 258-264. https://doi.org/10.1016/j.biortech.2015.07.103

Zdanowicz, M.; Wilpiszewska, K.; Spychaj, T. 2018. Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym 200: 361-380. https://doi.org/10.1016/j.carbpol.2018.07.078

Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jerome, F. 2012. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41(21): 7108-7146. https://doi.org/10.1039/C2CS35178A

Downloads

Published

2022-08-03

How to Cite

Koray Gülsoy, S. ., Küçüle, A. ., & Gençer, A. . (2022). Deep eutectic solvent pulping from sorghum stalks. Maderas. Ciencia Y Tecnología, 24, 1–12. https://doi.org/10.4067/s0718-221x2022000100450

Issue

Section

Article