Particleboard experimental production with bamboo, pine and mate for one product of new applications

Authors

  • Fernando Rusch
  • Éverton Hillig
  • Erick Chagas Mustefaga
  • Rômulo Trevisan
  • José Guilherme Prata
  • Gabriel de Magalhães Miranda

DOI:

https://doi.org/10.4067/s0718-221x2023000100414

Keywords:

Alternative lignocellulosic materials, centroid simplex design, Ilex paraguariensis, melamine-urea-formaldehyde, particleboard, Phyllostachys aurea, Pinus taeda

Abstract

Particleboard can be produced from a mixture of different lignocellulosic materials, which can be chosen depending on the density required for the panel and its applications. The aim of this study was to evaluate the mechanical properties of particleboard with bamboo, pine and mate for a new product of high density for the special applications currently served by HDF. Particles of bamboo (Phyllostachys aurea) finely chopped sticks of mate (Ilex paraguariensis) and commercial particles of southern pine (Pinus taeda) wood were used. These particles used 100 % by weight in the panel or in mixtures of 50 % each (three mixtures) or in a triple mixture of one third each, were glued in a drum-type rotary mixer with melamine-urea-formaldehyde (MUF) resin, and pressed in hydraulic press at 120 °C and 5,88 MPa for 10 minutes, up to 6 mm thickness. The panels were produced with 0,90 g∙cm-3 nominal density and, after pressing, were conditioned at 20 ºC and 65 % relative humidity. Statistical was performed by means the variance analysis and simplex centroid experimental design, with three replicates. It was found the use of pine particles contributed mainly to increase the panel's strength and stiffness, while the use of mate particles facilitated internal bond strength. The results compared with the ANSI A208.1 indicate that the panels with potential for use as floors and other applications requiring medium to high mechanical strength. The mixtures modeling showed that the water absorption, the strength and stiffness in bending and the internal bond strength are explained by the cubic model, while the thickness swelling and hardness are explained by the quadratic model. The best physical and mechanical properties results were found for the pine, bamboo and mate same ratio mixture.

Downloads

Download data is not yet available.

References

Arruda, L.M.; Del Menezzi, C.H.S.; Teixeira, D.E.; Araújo, P.C. 2011. Lignocellulosic composites from brazilian giant bamboo (Guadua magna) Part 1: properties of resin bonded particleboards. Maderas-Cienc Tecnol 13(1): 49-58. http://dx.doi.org/10.4067/S0718-221X2011000100005

Associação Brasileira de Normas Técnicas. 2018. Painéis de partículas de média densidade - Parte 2: Requisitos e métodos de ensaio - Norma Técnica. NBR 14810-2. ABNT. Rio de Janeiro, BR. (In Brazilian Portuguese) https://www.abntcatalogo.com.br/norma.aspx?ID=409718

American National Standards Institute. 2016. Particleboard standert; Composite Panel Association. ANSI A208.1-2016. ANSI. Gaithersburg, MD, EUA. https://www.compositepanel.org/education-resources/store/standards/ansi-a2081-particleboard.html

American Society for Testing and Materials. 2020. Standard test methods for conducting machining tests of wood and wood-base materials. ASTM D1037-12. ASTM. West Conshohocken, PA, USA. https://www.astm.org/Standards/D1037.htm

Barbu, M.C.; Tudor, E.M. 2021. State of the art of the Chinese forestry, wood industry and its markets. Wood Mater Sci Eng 17(6): 1030-10. https://doi.org/10.1080/17480272.2021.1891457

Benthien, J.T.; Lüdtke, J.; Ohlmeyer, M. 2019. Effect of increasing core layer particle thickness on lightweight particleboard properties. Eur J Wood Prod 77(6): 1029-1043. https://doi.org/10.1007/s00107-019-01452-5

Bianche, J.J.; Carneiro, A.C.O.; Vital, B.R.; Pereira, F.A.; Santos, R.C.; Soratto, D.V. 2012. Properties of particleboards fabricated with eucalyptus (Eucalyptus urophylla), parica (Schizolobium amazonicum) and vassoura (Sida spp.) particles. Cerne 18(4): 623-630. http://dx.doi.org/10.1590/S0104-77602012000400012

Commercial Standard. 1968. Mat formed wood particleboard. CS 236-66. CS. Geneva, Switzerland. https://www.nist.gov/standardsgov/withdrawn-doc-commercial-standards-cs

Cosereanu, C.N.; Brenci, L.M.N.; Zeleniuc, O.I.; Fotin, A.N. 2015. Effect of particle size and geometry on the performance of single-layer and three-layer particleboard made from sunflower seed husks. BioResources 10(1): 1127-1136. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_1_1127_Cosereanu_Particle_Size_Geometry_Sunflower

Dias, F.M.; Nascimento, M.F.D.; Martinez-Espinosa, M.; Lahr, F.A.R.; Valarelli, I.D.D. 2005. Relation between the compaction rate and physical and mechanical properties of particleboards. Mater Res 8(3): 329-333. https://doi.org/10.1590/S1516-14392005000300018

Dünisch, O.; Reissmann, C.B.; Oliszeski, A. 2004. Variability of vessel characteristics in the xylem of Ilex paraguariensis (mate-tree) from South Brazil. IAWA J 25(4): 449-458. https://brill.com/view/journals/iawa/25/4/article-p449_5.xml

European Standards. 1993a. Wood-based panels - Determination of density EN 323:1993. https://www.en-standard.eu/une-en-323-1994-wood-based-panels-determination-of-density/

European Standards. 1993b. Wood-based panels. Determination of moisture content. EN 322:1993. https://www.en-standard.eu/bs-en-322-1993-wood-based-panels-determination-of-moisture-content/

European Standards. 1993c. Particleboards and fibreboards; determination of swelling in thickness after immersion in water. EN 317:1993. https://www.en-standard.eu/din-en-317-particleboards-and-fibreboards-determination-of-swelling-in-thickness-after-immersion-in-water-german-version-en-317-1993/

Frollini, E.; Leão, A.; Mattoso; L.H.C. 2000. Natural polymers and agrofibers based composites. São Carlos: USP-IQSC/UNESP/Embrapa Instrumentação Agropecuária. https://repositorio.usp.br/item/001077260

Furtini, A.C.C.; Santos, C.A.; Faria, D.L.; Vecchia, A.P.L.; Fernandes, I.C.; Mendes, L.M.; Júnior, J.G. 2019. Valorization of bamboo wastes for the production of particleboards. In Wastes: Solutions, Treatments and Opportunities III: Selected Papers from the 5th International Conference Wastes 2019, Lisbon, Portugal, CRC Press: 198-203. https://doi.org/10.1201/9780429289798

Hillig, É.; Haselein, C.R.; Iwakiri, S. 2003. Modelagem de mistura de três espécies de madeiras na fabricação de painéis estruturais. Floresta 33(3): 311-320. (In Brazilian Portuguese) https://revistas.ufpr.br/floresta/article/view/2264

Hiziroglu, S.; Jarusombuti, S.; Fueangvivat, V.; Bauchongkol, P.; Soontonbura, W.; Darapak, T. 2005. Properties of bamboo-rice straw-eucalyptus composite panels. Forest Prod J 55(12): 221-225. https://www.inbar.int/resources/article/properties-of-bamboo-rice-straw-eucalyptus-composite-panels/

Iswanto, A.H.; Simarmata, J.; Fatriasari, W.; Azhar, I.; Sucipto, T.; Hartono, R. 2017. Physical and mechanical properties of three-layer particleboards bonded with UF and UMF adhesives. J Korean Wood Sci Technol 45(6): 787-796. https://doi.org/10.5658/WOOD.2017.45.6.787

Iwakiri, S.; Caprara, A.C.; Saks, D.C.O.; Guisantes, F.P.; Franzoni, J.A.; Krambeck, L.B.P.; Rigatto, P.A. 2005a. Produção de painéis de madeira aglomerada de alta densificação com diferentes tipos de resinas. Sci For 68: 39-43. (In Brazilian Portuguese) https://www.ipef.br/publicacoes/scientia/nr68/cap04.pdf

Iwakiri, S.; Andrade, A.S. de; Cardoso Junior, A.A.; Chipanski, E.R.; Prata, J.G.; Adriazola, M.K.O. 2005b. Produção de painéis aglomerados de alta densificação com uso de resina melamina-uréia-formaldeído. Cerne 11(4): 323-328. (In Brazilian Portuguese) https://doi.org/10.18671/scifor.v44n111.12

Iwakiri, S.; Zeller, F.; Pinto, J.A.; Ramirez, M.G.L.; Souza, M.M.; Seixas, R. 2010. Avaliação do potencial de utilização da madeira de Schizolobium amazonicum “Paricá” e Cecropia hololeuca “Embaúba” para produção de painéis aglomerados. Acta Amazon 40(2): 303-308. (In Brazilian Portuguese) https://doi.org/10.1590/S0044-59672010000200008

Kuram, E. 2021. Advances in development of green composites based on natural fibers: A review. Emergent Mater 4(4): 1-21. https://doi.org/10.1007/s42247-021-00279-2

Mattos, R.L.; Gonçalves, R.M.; Chagas, F.B. 2008. 5. Produtos Florestais. In Painéis de madeira no Brasil: panorama e perspectivas. Mattos, R.L.; Gonçalves, R.M.; Lacerda, F.C. (eds.). BNDES Setorial. Rio de Janeiro, RJ, BR. (In Brazilian Portuguese) https://web.bndes.gov.br/bib/jspui/handle/1408/2526

Miller, Z.D.; Peralta, P.N.; Mitchell, P.H.; Kelley, S.S.; Chiang, V.L.; Pearson, L.; Peszlen, I.M. 2019. Anatomical, physical, and mechanical properties of transgenic loblolly pine (Pinus teada L.) modified for increased density. Wood Fiber Sci 51: 173-182. https://doi.org/10.22382/wfs-2019-018

Mendes, L.M.; Guimaraes Junior, M.; Raabe, J.; Silva, D.W.; Tonoli, G.H. D.; Mendes, L.M. 2017. 37. Painéis aglomerados produzidos com bambu. In Bambus no Brasil: da biologia à tecnologia. Drumond, P.M.; Wiedman, G. (eds.). Embrapa Acre-Livro técnico - INFOTECA-E. Rio de Janeiro, BR. (In Brazilian Portuguese) https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1078373/bambus-no-brasil-da-biologia-a-tecnologia

Melo, R.R.; Santini, E.J.; Haselein, C.R.; Stangerlin, D.M. 2009. Propriedades físico-mecânicas de painéis aglomerados produzidos com diferentes proporções de madeira e casca de arroz. Cienc Florest 19(4): 449-460. (In Brazilian Portuguese) https://doi.org/10.5902/19805098899

Montgomery, D.C. 2019. Design and analysis of experiments. John Willey & Sons. 10th Edition. New York, EUA. https://www.wiley.com/en-us/exportProduct/pdf/9781119492443

Morland, C.; Schier, F. 2020. Modelling Bioeconomy scenario pathways for the forest products markets with emerging lignocellulosic products. Sustainability 12(24): 10540. https://doi.org/10.3390/su122410540

Narciso, C.R.P.; Reis, A.H.S.; Mendes, J.F.; Nogueira, N.D.; Mendes, R.F. 2021. Potential for the use of coconut husk in the production of medium density particleboard. Waste Biomass Valori 12(3): 1647-1658. https://doi.org/10.1007/s12649-020-01099-x

Normatización Española. 1994. Determinación del módulo de elasticidad en flexión y de la resistência a la flexión. UNE-EN 310-94. EN. Madrid, Spain. (In Spanish) https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0008516

Normatización Española. 1994.: Determinación de la resistência a la tración perpendicular a las caras del tablero. UNE-EN 319-94. EN. Madrid, Spain. (In Spanish) https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0008535

Normatización Española. 2010. Tableros de partículas – especificaciones. UNE-EN 312-10. EN. Madrid, Spain. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0046341

Okahisa, Y.; Kojiro, K.; Kiryu, T.; Oki, T.; Furuta, Y.; Hongo, C. 2018. Nanostructural changes in bamboo cell walls with aging and their possible effects on mechanical properties. J Mater Sci 53: 3972-3980. https://doi.org/10.1007/s10853-017-1886-8

Pole Cola. 2011. MUF-2011: Melanina-ureia-formaldeído. PC. Vitorino, BR. (In Brazilian Portuguese) http://www.polecola.com.br/produtos/2/6/muf-2011/

Sanches, F.L.; Hillig, É.; Iwakiri, S.; Napoli, L.M. 2016. Resistência de painéis aglomerados produzidos com mistura de madeira de espécies florestais tradicionais e não tradicionais. Ciênc Florest 26(2): 559-569. (In Brazilian Portuguese) https://doi.org/10.5902/1980509822756

Sanquetta, C.R.; Santana, G.M.; Sanquetta, M.N.I.; de Oliveira, T.W.G.; Dalla Corte, A.P. 2019. Produção, importação, exportação e consumo aparente de painéis de madeira no brasil entre 1961 e 2016. BIOFIX 5(1): 44-49. http://dx.doi.org/10.5380/biofix.v5i1.66112

Soares, S.S.; Júnior, J.B.G.; Mendes, L.M.; Mendes, R.F.; de Paula Protásio, T.; Lisboa, F.N. 2017. Valorização do bagaço de cana-de-açúcar na produção de painéis aglomerados de baixa densidade. Rev Cienc Madeira 8(2): 64-73. https://doi.org/10.12953/2177-6830/rcm.v8n2p64-73

Souza, J.T.; Talgatti, M. de; Silveira, A.G.; Menezes, W.M.; Haselein, C.R.; Santini, E.J. 2019. Propriedades mecânicas do MDP produzido com partículas de madeira de Ilex paraguariensis, Pinus elliottii e Eucalyptus grandis. Sci For 47(122): 273-285. (In Brazilian Portuguese) https://www.ipef.br/publicacoes/scientia/nr122/cap10.pdf

Sugahara, E.S.; da Silva, S.A.M.; Buzo, A.L.S.C.; de Campos, C.I.; Morales, E.A.M.; Ferreira, B.S.; dos Anjos Azambuja, M.; Rocco Lahr, F.A.;

Cristoforo, A.L. 2019. High-density particleboard made from agro-industrial waste and different adhesives. BioResources 14(3): 5162-5170. https://doi.org/10.15376/biores.14.3.5162-5170

Varanda, L.D.; Souza, A.M.; Almeida, D.H.; Icimoto, F.H.; Ferro, F.S.; Christoforo, A.L.; Lahr, F.A.R. 2014. Strength and Stiffness Properties of Particleboards. Int J Compos Mater 4(2): 150-156. https://doi.org/10.5923/j.cmaterials.20140402.15

Wu, Q. 1999. Application of Nelson’s sorption isotherm to wood composites and overlays. Wood Fiber Sci 31(2): 187-191. https://wfs.swst.org/index.php/wfs/article/view/860

Zheng, Y.; Yi, B.L.; Tong, Y.Q.; Peng, Z.Z. 2020. Influence of assemble patterns on bonding strength of glued bamboo. J Wood Sci 66: 1-8. https://doi.org/10.1186/s10086-020-01907-x

Downloads

Published

2023-01-11

How to Cite

Rusch, F. ., Hillig, Éverton ., Chagas Mustefaga, E. ., Trevisan, R. ., Prata, J. G. ., & de Magalhães Miranda, G. . (2023). Particleboard experimental production with bamboo, pine and mate for one product of new applications. Maderas. Ciencia Y Tecnología, 25, 1–12. https://doi.org/10.4067/s0718-221x2023000100414

Issue

Section

Article

Most read articles by the same author(s)