Wood quality of 10 clonal progenies of rubber tree as raw material for bioenergy

Authors

  • Erick Phelipe Amorim
  • Eduardo Luiz Longui
  • Miguel Luiz Menezes Freitas
  • Fábio Minoru Yamaji
  • Francides Gomes da Silva Júnior
  • Marcela Aparecida de Moraes Silvestre
  • José Cambuim
  • Mario Luiz Teixeira de Moraes
  • Paulo de Souza Gonçalves

DOI:

https://doi.org/10.4067/s0718-221x2023000100428

Keywords:

Bioenergetic source, chemical composition, Hevea brasiliensis, thermogravimetric biomass, wood density

Abstract

The use of wood as a bioenergetic source requires knowledge of its technical properties. The rubber tree Hevea brasiliensis has an economic life cycle of 25 to 30 years in Brazil. It is used for extracting rubber and generating residual wood for fuel. Our goal was to characterize the wood quality of 10 clonal progenies as a source of raw material for bioenergy. Ten clonal progenies of 12-year-old Hevea brasiliensis from an experimental planting in Selvíria municipality were evaluated. Three trees per clone were evaluated for individual properties of Higher Heating Value, immediate chemical analysis, chemical composition, fiber dimensions, thermogravimetric analysis of wood under nitrogen atmosphere and Fourier Transform Infrared Spectrosocopy analysis. We highlight clone IAC 311 for fuel because it presents elevated Higher Heating Value and fixed carbon and less volatile material. However, the other genetic materials studied also meet the specifications for energy use and can be highly viable given their physical, chemical, energy, and thermal properties.

Downloads

Download data is not yet available.

References

Associação Brasileira de Normas Técnicas. ABNT. 2003. Wood - Determination of wood density. NBR 11941. ABNT. Rio de Janeiro, Brazil. https://www.abntcatalogo.com.br/norma.aspx?ID=002494

Alzate, S.B.A.; Tomazello-Filho, M.; Piedade, S.M.S. 2005. Variação longitudinal da densidade básica da madeira de clones de Eucalyptus grandis Hill ex Maiden, E. saligna Sm e E. grandis x urophylla. Sci For 68(1): 87-95. https://www.ipef.br/publicacoes/scientia/nr68/cap08.pdf

American Society for Testing and Materials. 1982. Standard test method for volatile matter in the analysis of particulate wood fuel. ASTM E872. ASTM. West Conshohocken, PA, USA. https://www.astm.org/Standards/E872.htm

American Society for Testing and Materials. 2013. Standard Test Method for Ash in Wood. ASTM D 1102-84. ASTM. West Conshohocken, PA, USA. https://www.astm.org/Standards/D1102.htm

American Society for Testing and Materials.2004. Standard test method for gross calorific value of coal and coke. ASTM D 5865-98. ASTM. West Conshohocken, PA, USA. https://www.astm.org/DATABASE.CART/HISTORICAL/D5865-13.htm

Berlyn, G.P.; Miksche, J.P. 1976. Botanical microtechnique and cytochemistry. Iowa State University Press, Ames, Iowa, USA.

Bufalino, L.; Protássio, T.P.; Couto, A.M.; Nassur, O.A.C.; de Sá, V.A.; Trugilho, P.F.; Mendes, L.M. 2012. Caracterização química e energética para aproveitamento da madeira de costaneira e desbaste de cedro australiano. PFB 32(70): 129–121. https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/356 (In Portuguese)

Brun, E.J.; Bersch, A.P.; Pereira, F.A.; Silva, D.A.; de Barba, Y.R.; Junior, J.R.D. 2017. Caracterização energética da madeira de três materiais genéticos de Eucalyptus sp. Floresta 48(1): 87-92. http://dx.doi.org/10.5380/rf.v48i1.51673 (In Portuguese)

Castro, J.F.; Parra, C.; Yáñez, S.M.; Rojas, J.;Teixeira, R.M.; Baeza,J.; Freer, J. 2013. Optimal pretreatment of Eucalyptus globulus by hydrothermolysis and alkaline extraction for microbial production of ethanol and xylitol. Ind Eng Chem Res 52(16): 5713– 5720. https://dx.doi.org/10.1021/ie301859x

Dias-Junior, A.F.; de Andrade, A.M.; Soares, V.W.; Junior, D.S.C.; Ferreira, D.H.A.A.; dos Santos Leles, P.S. 2015. Potencial energético de sete materiais genéticos de Eucalyptus cultivados no estado do Rio de Janeiro. Sci For 43(108): 833-843. https://dx.doi.org/10.18671/scifor.v43n108.8

Empresa de Pesquisa Energética. EPE. 2022. Matriz Energética e Elétrica. Online document. https://www.epe.gov.br/pt/abcdenergia/matriz-energetica-e-eletrica (In Portuguese)

Fernandes, E.R.K.; Marangoni, C.; Souza, O.; Sellin, N. 2013. Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manage 75: 603-608. https://doi.org/10.1016/j.enconman.2013.08.008

Ferreira, M.C.; Santos, R.C.; Castro, R.V.O.; Carneiro, A.C.O.; Silva, G.G.C.; Castro, A.F.N.M.; Costa, S.E.L.; Pimenta, A.S. 2017. Biomass and energy production at short rotation Eucalyptus clonal plantations deployed in Rio Grande do Norte. Rev Árv 41(5): 1-7. https://doi.org/10.1590/1806-90882017000500004

Gonçalves, P.D.S.; Bataglia, C.O.; Ortolani, A.A.; Fonsesca, F.S. 2001. Manual de Heveicultura para o estado de São Paulo. Boletim Técnico IAC 189. 78p. Campinas, Brazil. (In Portuguese)

Gonçalves, B.; Dustin, T.; Oladiram, F.; Bijay, T.; Tom, G. 2015. Influence of bark on the physical and thermal decomposition properties of short- rotation Eucalyptus. Bioenergy Res 8: 1414-1423. https://doi.org/10.1007/s12155-015-9606-1

Huang, C.; Han, L.; Yang, Z.; Liu, X. 2009. Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Manage 29(6): 1793-1797. https://doi.org/10.1016/j.wasman.2008.11.027

Indústria Brasileira de Árvores. IBA. 2023. Anuário estatístico da IBA: ano base 2022, 2023. https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf (In Portuguese)

International Association of Wood Anatomists. IAWA. 1989. List of microscopic features for hardwood identification, with an appendix on non-anatomical information. IAWA Bulletin 10(3): 219-332. https://www.iawa-website.org/uploads/soft/Abstracts/IAWA%20list%20of%20microscopic%20features%20for%20hardwood%20identification.pdf

Jesus, M.S.; Costa, L.J.; Ferreira, J.C.; Freitas, F.P.; Santos, L.C.; Rocha, M.F.V. 2017. Caracterização energética de diferentes espécies de Eucalyptus. Rev Flor 47(1): 11-16. http://dx.doi.org/10.5380/rf.v47i1.48418

Lima, E.A.; Silva, H.D.; Lavoranti, O.J. 2011. Caracterização dendroenergética de árvores de Eucalyptus benthamii. PFB 31(65): 9-17. http://dx.doi.org10.4336/2010.pfb.31.65.09 (In Portuguese)

Lima, I.L.; Bergarmo, R.; Bermudez, K.R.; Moraes, M.L.T.; Garcia, J.N. 2020. Caracterização das propriedades mecânicas da madeira de clones de Hevea brasiliensis (Will.Ex.Adri). Sci for 48(125): 1-12. https://doi.org/10.18671/scifor.v48n125.04 (In Portuguese)

López-Gonzalez, D.; Fernandez-López.; Valverde, J.L.; Sanchez-Silva, L. 2013. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresour Technol 143: 562-574. https://doi.org/10.1016/j.biortech.2013.06.052 (In Portuguese)

Mehmood, M.A.; Ibraim, M.; Rashid, V.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. 2017. Biomass production for bioenergy using marginal lands. Sustainable Prod Consumption 9: 3-21. https://doi.org/10.1016/j.spc.2016.08.003

Menucelli, J.R.; Amorim, E.P.; Freitas, M.L.M.; Zanata, M.; Cambuim, J.; Moraes, M.L.T.; Yamaji, F.M.; Silva-Junior, F.G.; Longui, E.L. 2019. Potential of Hevea brasiliensis Clones, Eucalyptus pellita and Eucalyptus tereticornis Wood as Raw Materials for Bioenergy Based on Higher Heating Value. Bioenergy Res 12: 992-999. https://doi.org/10.1007/s12155-019-10041-6

Muzel, S.D.; Oliveira, K.A.; Hansted, F.A.S.; Prates, G.A.; Goveia, D. 2014. Wood calorific power from Eucalyptus grandis and Hevea brasiliensis species. Rev Bras de Eng Bios 8(2): 166–172. https://seer.tupa.unesp.br/index.php/BIOENG/article/view/191/0

Neves, T.A.; Protásio, T.P.; Couto, A.M.; Trugilho, P.F.; Silva, V.O.; Vieira, C.M.M.O. 2011. Avaliação de clones de Eucalyptus em diferentes locais visando a produção de carvão vegetal. PFB 31(68): 319-330. https://doi.org/10.4336/2011.pfb.31.68.319 (In Portuguese)

Oliveira, A.C.; Carneiro, A.C.O.; Vital, B.R.; Almeida, W.; Pereira, B.L.C.; Cardoso, M.T. 2010. Parâmetros de qualidade da madeira e do carvão vegetal de Eucalyptus pelitta F. Muell. Sci For 38 (87): 431-439. https://www.ipef.br/publicacoes/scientia/nr87/cap10.pdf (In Portuguese)

Pandey, K.K.; Pitman, A.J. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior biodegrad 52(1): 151-160. http://dx.doi.org/10.1016/S0964-8305(03)00052-0

Paula, N.F. 2003. Caracterização anatômica da madeira de sete espécies da Amazônia com vistas à produção de energia e papel. Acta Amazon 33(2): 243-262. http://dx.doi.org/10.1590/1809-4392200332262 (In Portuguese)

Pereira, B.L.C.; Carneiro, A.C.O.; Carvalho, A.M.M.L.; Trugilho, P.F.; Melo, I.C.N. 2013. Estudo da degradação térmica da madeira de Eucalyptus através de termogravimétrica e calorimétrica. Rev Arv 37(3): 567-576. https://doi.org/10.1590/S0100-67622013000300020 (In Portuguese)

Pereira, B.L.C.; Carvalho, A.M.M.L.; Oliveira, A.C.; Santos, L.C.; Carneiro, A. de C.O.; Magalhães, M.A. 2016. Efeito da carbonização da madeira na estrutura anatômica e densidade do carvão vegetal de Eucalyptus. Cienc Florest 26(2): 545-557. http://doi.org/10.5902/1980509822755 (In Portuguese)

Popescu, M.C.; Popescu, C.M.; Lisa, G.; Sakata, Y. 2011. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and termal methods. J Mol Struct 988(1-3): 65-67. http://dx.doi.org/10.1016/j.molstruc.2010.12.004

Protásio, T.P.; Neves, T.A.; Reis, A.A.; Trugilho, P.F. 2014. Efeito da idade e clone na qualidade da madeira visando a produção de bioenergia. Cienc Florest 24 (2): 465-477. http://dx.doi.org/10.5902/1980509814587 (In Portuguese)

Soares, V.C.; Bianchi, M.L.; Trugilho, P.F.; Pereira, A.J.; Hofler, J. 2014. Correlação entre as propriedades da madeira e do carvão vegetal de híbridos de eucalipto. Rev Arv 38(3): 543-549. http://dx.doi.org/10.1590/S0100-67622014000300017 (In Portuguese)

Protásio, T.P.; Scatolino, M.V.; Araújo, A.C.C.; Oliveira, A.F.C.F.; Figueiredo, I.C.R.; Assis, M.R.; Trugilho, P.F. 2019. Assessing proximate composition, extractive concentration and lignin quality to determine appropriate parameters for selection of superior Eucalyptus firewood. Bioenergy Res 12: 626-641. http://doi.org/10.1007/s12155-019-10004-x

Purba, B.A.V.; Sunarti, S.; Lukmandaru, G. 2021. Phenolics content and antioxidant activity of wood extractives from three clones of acacia hybrid (Acacia mangium × acacia auriculiformis. Maderas-Cienc Tecnol 23: 28, 1-12. http://doi.org/10.4067/s0718-221x2021000100428

Queiroz, S.C.S.; Gomide, J.S.; Colodette, J.L.; Oliveira, R.C. 2004. Influência da densidade básica da madeira na qualidade da polpa Kraft de clones híbridos de Eucalyptus grandis W. Huel ex Maiden x Eucalyptus urophylla S.T. Blake. Rev Arv 28(6): 901-909. http://dx.doi.org/10.1590/S0100-67622004000600016 (In Portuguese)

Ramos, L.M.A.; Latorraca, J.V.F.; Neto, T.C.; Martins, L.S.; Severo, E.T.D. 2016. Anatomical Characterization of tension wood in Hevea brasiliensis (Will.ex.A.Juss.). Mull. Arg. Rev Arv 40(6): 1099-1107. https://doi.org/10.1590/010067622016000600016

Ratnasingam, J.; Grohmann, R.; Scholz, F. 2009. Drying quality of rubberwood: an industrial perspective. Eur J Wood Prod 68: 115-116. https://doi.org/10.1007/s00107-009-0353-x

Saccol, A.F.O.; Welter, C.A.; da Rosa, R.C.; Coldebella, R.; Longhi, S.J.; Farias, J.A.; Pedrazzi, C. 2020. Aproveitamento da biomassa florestal na fabricação de briquetes. Matéria 25: 2. https://doi.org/10.1590/S1517-707620200002.1034 (In Portuguese)

Santos, H.D.; Jacomine, P.K.T.; Anjos, L.D.; Oliveira, V.D.; Oliveira, J.D.; Coelho, M.R.; Cunha, T.D. 2006. Sistema brasileiro de classificação de solos. Embrapa. Centro Nacional de Pesquisa de Solos. Rio de Janeiro, RJ, Brazil. https://www.agrolink.com.br/downloads/sistema-brasileiro-de-classificacao-dos-solos2006.pdf (In Portuguese)

Satakhun, D.; Chayawat, C.; Sathornkich, J.; Phattaralerphong, J.; Chantuma, P.; Thaler, P.; Gay, F.; Nouvellon, Y.; Kasemsap, P. 2019. Carbon sequestration potential of rubber-tree plantation in Thailand. In IOP Conf. Ser. Mater Sci Eng 526 012036. https://doi.org/10.1088/1757-899X/526/1/012036

Schuerch, C. 1989. Cellulose and wood chemistry and technology. John Wiley & Sons Inc. New York, USA. 1638p.

Scriba, C.; Lunguleasa, A.; Salca, E.; Ciobanu, V. 2021. Properties of biomass obtained from short-rotation Inger willow clone grown on a contaminated and non-contaminated land. Maderas-Cienc Tecnol 23: 14, 1-12. https://doi.org/10.4067/s0718-221x2021000100414

Shen, R.; Gu, S.; Bridgwater, A.V. 2010. The thermal performance of the polysaccaharides extracted from hardwood: cellulose and hemicellulose. Carbohydr Polym 82: 39-42. https://doi.org/10.1016/j.carbpol.2010.04.018

Schoninger, E.C.; Zinelli, M.R. 2012. Análise qualitativa dos carvões de Apuleia leiocarpa e Hymenaea courbaril produzidos numa carvoaria de Matupá-MT. Rev Cienc Agro-Amb 10(2): 135-140. http://www.unemat.br/revistas/rcaa/docs/vol10-2/1_modelo_artigo_rcaa_v10n2a2012_elizabeth.pdf (In Portuguese)

SigmaPlot. 2013. SigmaPlot 12. SigmaPlot. Exact Graphs and Data Analysis. http://www.sigmaplot.co.uk/products/sigmaplot/produpdates/prod-updates18.php

Silva, S.B.; Arantes, M.D.C.; Andrade, J.B.; Andrade, C.R.; Carneiro, A.C.O.; Protásio, T.P. 2020. Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil. Renew energy 147(1): 1870-1879. http://doi.org/10.1016/j.renene.2019.09.131

Skeva, T.; Swinton, S.M.; Hayden, N.J. 2014. What type of landowner would supply marginal land for energy energy crops. Biomass Bioenergy 67: 252-259. https://doi.org/10.1016/j.biombioe.2014.05.011

Tan, A.G. 1989. Pyrolysis of rubberwood-a laboratory study. J Trop For Sci 1(3): 244–254. https://www.jstor.org/stable/43594579

Tan, Z.; Lagerlvist, A. 2011. Phosphorus recovery from the biomass ash: a review. Renewable sustainable energy rev 15(8): 3588-3602. https://doi.org/10.1016/j.rser.2011.05.016

Technical Association of the Pulp and Paper Industry Standard. 2001. Solvent extractives of wood and pulp. TAPPI. T204 om-88. TAPPI Standard Method: Atlanta, USA. https://www.tappi.org/content/sarg/t204.pdf

Technical Association of the Pulp and Paper Industry Standard. 2011. Acid- Insoluble lignin in wood in pulp. TAPPI. T22 om11. TAPPI Standard Method: Atlanta, USA. https://www.tappi.org/content/SARG/T222.pdf

Telmo, C.; Lousada, J. 2011. Heating values of wood pellets from different species. Biomass Bioenergy 35(7): 2634–2639. https://doi.org/10.1016/j.biombioe.2011.02.043

Tenorio, C.; Moya, R. 2013. Thermogravimetric characteristics, its relation witch extractives and chemical properties and combustion characteristics of ten fast-growth species in Costa Rica. Thermochim Acta 563: 12-21. https://doi.org/10.1016/j.tca.2013.04.005

Trugilho, P.F.; Silva, D.A. 2001. Influência da temperatura final de carbonização nas características físicas e químicas do carvão vegetal de jatobá (Hymenea courbaril L.). Sci Agrária 2(1): 45-53. http://dx.doi.org/10.5380/rsa.v2i1.976 (In Portuguese)

Tyutkova, E.A.; Loskutov, S.R.; Shestakov, N.P. 2019. FTIR spectroscopy of early and latewood of Larix gmelnii growing along the polar treeline: the correlation between absorption bands and climatic factors. Wood Mater Sci Eng 14: 1-9. https://doi.org/10.1080/17480272.2018.1562495

Vieira, T.A.S. 2019. Qualidade e combustibilidade da madeira de clones de Eucalyptus spp. Thesis, University Federal of Lavras, UFLA. Minas Gerais, Brazil. http://repositorio.ufla.br/handle/1/65 (In Portuguese)

Werther, J.; Saenger, M.; Hartge, E.U.; Ogada, T.; Siagi, Z. 2000. Combustion of agricultural residues. Prog Energy Combust Sci 26(1): 1–27. https://doi.org/10.1016/S0360-1285(99)00005-2

Yeo, J.Y.; Chin, B.L.F.; Tan, J.K.; Loh, Y.S. 2019. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. J Energy Inst 92(1): 27– 37. https://doi.org/10.1016/j.joei.2017.12.003

Yu, J.; Paterson, N.; Blamey, J.; Millan, M. 2017. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel 191: 140-149. https://dx.doi.org/10.1016/j.fuel.2016.11.057

Downloads

Published

2023-03-28

How to Cite

Amorim, E. P. ., Longui, E. L. ., Menezes Freitas, M. L. ., Yamaji, F. M. ., Gomes da Silva Júnior, F. ., Silvestre, M. A. de M., Cambuim, J. ., Teixeira de Moraes, M. L. ., & de Souza Gonçalves, P. . (2023). Wood quality of 10 clonal progenies of rubber tree as raw material for bioenergy. Maderas. Ciencia Y Tecnología, 25, 1–16. https://doi.org/10.4067/s0718-221x2023000100428

Issue

Section

Article

Most read articles by the same author(s)