Radial compression strength can predict the hydraulic vulnerability of mature Norway spruce sapwood

Authors

  • Sabine Rosner University of Natural Resources and Life Sciences. Department of Integrative Biology and Biodiversity Research. Institute of Botany. Vienna, Austria
  • Saskia Luss University of Natural Resources and Life Sciences. Department of Integrative Biology and Biodiversity Research. Institute of Botany. Vienna, Austria
  • Johannes Konnerth University of Natural Resources and Life Sciences. Department of Material Sciences and Process Engineering. Institute of Wood Technology and Renewable Materials. Tulln an der Donau, Austria.
  • Norbert Kunert University of Natural Resources and Life Sciences. Department of Integrative Biology and Biodiversity Research. Institute of Botany. Vienna, Austria

DOI:

https://doi.org/10.22320/s0718221x/2024.19

Keywords:

Biomechanics, cavitation, hydraulic vulnerability, Norway spruce, radial compression strength, sapwood

Abstract

Hydraulic testing of isolated sapwood from mature tree trunks is time-consuming and prone to errors, whereas the measurement of compression strength is a standardized and rapid wood technological applica- tion. In this study, we aimed to analyze if compression stress perpendicular to the grain relates to hydraulic vulnerability of mature Norway spruce (Picea abies) trunk wood with an expected narrow vulnerability range. The sample-set comprised 52 specimens originating from 34 trees harvested in Sweden. Before mechanical testing, the P50, i.e., the water potential resulting in 50 % of hydraulic conductivity loss, was estimated on small sapwood beams employing the air injection method. Compression strength perpendicular to the grain was de- fined as the first peak of a stress-strain curve (peak stress) when the wood is subjected to radial compression. Peak stress ranged between 1,65 MPa and 5,07 MPa, P50 between -2,98 MPa and -1,98 MPa. We found a good correlation between the peak stress and P50  (r = 0,80; P < 0,0001). This provides further evidence that peak stress in radial compression and P50 are both extremely dependent on the characteristics of the “weakest” wood part, i.e., the highly conductive earlywood. We conclude that the radial compression strength is a good proxy for P50 of mature Norway spruce trunk wood.

Downloads

Download data is not yet available.

References

Adams, D.A.; Zeppel, M.J.B.; Anderegg, W.R.L.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D.; Anderegg, L.D.L.; Barron-Gafford, G.A.; Beer- ling, D.J.; Breshears, D.D.; Brodribb, T.J.; Bugmann, H.; Cobb, R.C.; Collins, A.D.; Dickman, L.T.; Duan, H.; Ewers, B.E.; Galiano, L.; Galvez, D.A.; Garcia-Forner, N.; Gaylord, M.L.; Germino, M.J.; Gessler, A.; Hacke, U.G.; Hakamada, R.; Hector, A.; Jenkins, M.W.; Kane, J.M.; Kolb, T.E.; Law, D.J.; Lewis, J.D.; Limousin, J.M.; Love, D.M.; Macalady, A.K.; Martínez-Vilalta, J.; Mencuccini, M.; Mitch- ell, P.J.; Muss, J.D.; O’Brien, M.J.; O’Grady, A.P.; Pangle, R.E.; Pinkard, E.A.; Piper, F.I.; Plaut, J.A.; Pockman, W.T.; Quirk, J.; Reinhardt, K.; Ripullone, F.; Ryan, M.G.; Sala, A.; Sevanto, S.; Sperry, J.S.; Vargas, R.; Vennetier, M.; Way, D.A.; Xu, C.; Yepez, E.A.; McDowell, N.G. 2017. A multi-species synthe- sis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution 1: 1285-1291. https://doi.org/10.1038/s41559-017-0248-x

Aimene, Y.A.; Nairn, J.A. 2015. Simulation of transverse wood compression using a large-deformation, hyperelastic-plastic material model. Wood Science and Technology 49: 21-39. https://doi.org/10.1007/s00226- 014-0676-6

Anfodillo, T.; Petit, G.; Crivellaro, A. 2013. Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA Journal 34: 352-364. https://doi.org/10.1163/22941932-00000030

Bouche, P.S.; Larter, M.; Domec, J.C.; Burlett, R.; Gasson, P.; Jansen, S.; Delzon, S. 2014. A broad survey of hydraulic and mechanical safety in the xylem of conifers. Journal of Experimental Botany 65: 4419- 4431. https://doi.org/10.1093/jxb/eru218

Brodribb, T.; Powers, J.; Cochard, H.; Choat, B. 2020. Hanging by a thread? Forests and drought. Science 368: 261-266. https://doi.org/10.1126/science.aat7631

Comstock, J.P. 2002. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. Journal of Experimental Botany 53: 195-200. https://doi.org/10.1093/jexbot/53.367.195

Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; Lopez, R.; Medlyn, B.E. 2018. Triggers of tree mortality under drought. Nature 558: 531-539. https://doi.org/10.1038/s41586-018-0240-x

Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; Jacobsen, A.L.; Lens, F.; Maherali, H.; Martínez-Vilalta, J.; Mayr, S.; Mencuccini, M.; Mitchell, P.J.; Nardini, A.; Pittermann, J.; Pratt, R.B.; Sperry, J.S.; Westoby, M.; Wright, I.J.; Zanne, A.E. 2012. Global convergence in the vulnerability of forests to drought. Nature 491:752- 755. https://doi.org/10.1038/nature11688

Cochard, H.; Badel, E.; Herbette, S.; Delzon, S.; Choat, B.; Jansen, S. 2013. Methods for mea- suring plant vulnerability to cavitation: a critical review. Journal of Experimental Botany 64: 4779-4791. https://doi.org/10.1093/jxb/ert193

Dlouhá, J.; Alméras, T.; Beauchêne, J.; Clair, B.; Fournier, M. 2018. Biophysical dependences among functional wood traits. Functional Ecology 32: 2652-2665. https://doi.org/10.1111/1365-2435.13209

Domec, J.C.; Gartner, B.L. 2001. Cavitation and water storage in bole segments of mature and young Douglas-fir trees. Trees 15: 204-214. https://doi.org/10.1007/s004680100095

Domec, J.C.; Warren, J.M.; Meinzer, F.C.; Lachenbruch, B. 2009. Safety for xylem failure by implo- sion and air-seeding within roots, trunks and branches of young and old conifer trees. IAWA Journal 30: 101- 120. https://doi.org/10.1163/22941932-90000207

Gindl, W.; Müller, U.; Teischinger, A. 2003. Effects of cell anatomy on the plastic and elastic behaviour of different wood species loaded perpendicular to grain. IAWA Journal 24: 117-128. https://doi.org/10.1163/22941 932-90000325

Hacke, U.G.; Sperry, J.S.; Pockman, W.T.; Davis, S.D.; McCulloh, K. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457-461. https://doi.org/10.1007/s004420100628

Hammond, W.M.; Yu, K.; Wilson, L.A.; Will, R.E.; Anderegg, W.R.L.; Adams, H.D. 2019. Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phy- tologist 223: 1834-1843. https://doi.org/10.1111/nph.15922

Huang, C.; Gong, M.; Chui, Y.; Cahn, F. 2020. Mechanical behaviour of wood compressed in radial direction-part I. New method of determining the yield stress of wood on the stress-strain curve. Journal of Bioresources and Bioproducts 5: 186-195. https://doi.org/10.1016/j.jobab.2020.07.004

Klein, T.; Cahanovitc, R.; Sprintsin, M.; Herr, N.; Schiller, G. 2019. A nation-wide analysis of tree mortality under climate change: Forest loss and its causes in Israel 1948-2017. Forest Ecology and Manage- ment 432: 840-849. https://doi.org/10.1016/j.foreco.2018.10.020

Luss, S. 2020. Methods to determine hydraulic vulnerability and other biological parameters in Nor- way spruce. Dissertation (PhD Thesis), University of Natural Resources and Life Sciences, Vienna, Austria. https://zidapps.boku.ac.at/abstracts/download.php?dataset_id=11502&property_id=107

Luss, S.; Lundqvist, S.O.; Evans, R.; Grahn, T.; Olsson, L.; Petit, G.; Rosner, S. 2019. Within-ring variability of wood structure and its relationship to drought sensitivity in Norway spruce trunks. IAWA Journal 40: 288-310. https://doi.org/10.1163/22941932-40190216

Mantova, M.; Menezes-Silva, P.E.; Badel, E.; Cochard, H.; Torres-Ruiz, J. M. 2021. The interplay of hydraulic failure and cell vitality explains tree capacity to recover from drought. Physiologia Plantarum 172: 247-257. https://doi.org/10.1111/ppl.13331

McDowell, N.G.; Allen, C.D. 2015. Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change 5: 669-672. https://doi.org/10.1038/nclimate2641

Müller, U.; Gindl, W.; Teischinger, A. 2003. Effects of cell wall anatomy on the plastic and elastic be- haviour of different wood species loaded perpendicular to grain. IAWA Journal 24: 117-128. https://brill.com/ view/journals/iawa/24/2/article-p117_2.xml

Olson, M.E.; Anfodillo, T.; Gleason, S.M.; McCulloh, K.A. 2021. Tip-to-base xylem conduit wid- ening as an adaptation: causes, consequences, and empirical priorities. New Phytologist 229: 1877-1893. https://doi.org/10.1111/nph.16961

Pammenter, N.W.; Vander Willigen, C. 1998. A mathematical and statistical analysis of the curves il- lustrating vulnerability of xylem to cavitation. Tree Physiology 18: 589-593. https://doi.org/10.1093/treeph- ys/18.8-9.589

Rockwell, F.E.; Wheeler, J.K.; Holbrook, N.M. 2014. Cavitation and its discontents: Opportunities for resolving current controversies. Plant Physiology 164: 1649-1660. https://doi.org/10.1104/pp.113.233817

Rosner, S. 2013. Hydraulic and biomechanical optimization in Norway spruce trunkwood: A review. IAWA Journal 34: 365-390. https://doi.org/10.1163/22941932-00000031

Rosner, S.; Gierlinger, N.; Klepsch, M.; Karlsson, B.; Evans, R.; Lundqvist, S.O.; Světlík, J.; Børja, I.; Dalsgaard, L.; Andreassen, K.; Solberg, S.; Jansen, S. 2018. Hydraulic and mechanical dysfunction of Norway spruce sapwood due to extreme summer drought in Scandinavia. Forest Ecology and Management 409: 527-540. https://doi.org/10.1016/j.foreco.2017.11.051

Rosner, S.; Heinze, B.; Savi, T.; Dalla-Salda, G. 2019. Prediction of hydraulic conductivity loss from relative water loss: new insights into water storage of tree stems and branches. Physiologia Plantarum 165: 843-854. https://doi.org/10.1111/ppl.12790

Rosner, S.; Karlsson B. 2011. Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood. Trees 25: 289-299. https://doi.org/10.1007/s00468-010-0505-y

Rosner, S.; Nöbauer, S.; Voggeneder, K. 2021. Ready for Screening: Fast assessable hydrau- lic and anatomical proxies for vulnerability to cavitation of young conifer sapwood. Forests 12: e1104. https://doi.org/10.3390/f12081104

Rosner, S.; Riegler, M.; Vontobel, P.; Mannes, D; Lehmann; E, Karlsson, B.; Hansmann, C. 2012. Within-ring movement of free water in dehydrating Norway spruce sapwood visualized by neutron radiogra- phy. Holzforschung 66: 751-756. https://doi.org/10.1515/hf-2011-0234

Rosner, S.; Světlík, J.; Andreassen, K.; Børja, I.; Dalsgaard, L.; Evans, R.; Luss, S.; Tveito, O.E.; Solberg, S. 2016. Novel hydraulic vulnerability proxies for a boreal conifer species reveal that opportun- ists may have lower survival prospects under extreme climatic events. Frontiers in Plant Science 7: e831. https://doi.org/10.3389/fpls.2016.00831

Spicer, R.; Gartner, B.L. 1998. Hydraulic properties of Douglas-fir (Pseudotsuga menziesii) branches and branch halves with references to compression wood. Tree Physiology 18: 777-784. https://doi.org/10.1093/ treephys/18.11.777

Thelandersson, S.; Larsen, H.J. 2003. Timber engineering. John Wiley & Sons: West Sussex, England.

Tyree, M.T.; Sperry, J.S. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology 40: 19-38. https://doi.org/10.1146/annurev.pp.40.060189.000315

Tyree, M.T.; Zimmermann, M.H. 2002. Xylem structure and the ascent of sap. 2nd edition, Springer: Berlin, Germany. https://link.springer.com/book/10.1007/978-3-662-04931-0

Venturas, M.D.; Sperry, J.S.; Hacke, U.G. 2017. Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology 59: 356-389. https://doi.org/10.1111/ jipb.12534

Wu, G.; Shen, Y.; Fu, F.; Guo, J.; Ren, H. 2022. Study of the mechanical properties of wood un- der transverse compression using Monto Carlo simulation-based stochastic FE analysis. Forests 13: e32. https://doi.org/10.3390/f13010032

Yan, S.; Eichhorn, S.J.; Toumpanaki, E. 2022. Numerical simulation of transverse compression and den- sification of wood. Wood Science and Technology 56: 1007-1027. https://doi.org/10.1007/s00226-022-01388-9

Zhong, Y.; Wu, G.; Fu, F.; Shen, Y.; Sun, J.; Ren, H.; Guo, J. 2022. A novel constitutive model for the porosity related super-large deformation and anisotropic behavior of wood under perpendicular to grain com- pression. Wood Science and Technology 56: 553-571. https://doi.org/10.1007/s00226-022-01361-6

Downloads

Published

2024-01-08

How to Cite

Rosner, S. ., Luss, S. ., Konnerth, J. ., & Kunert, N. . (2024). Radial compression strength can predict the hydraulic vulnerability of mature Norway spruce sapwood. Maderas-Cienc Tecnol, 26, 1–8. https://doi.org/10.22320/s0718221x/2024.19

Issue

Section

Article