Radial compression strength can predict the hydraulic vulnerability of mature Norway spruce sapwood
DOI:
https://doi.org/10.22320/s0718221x/2024.19Keywords:
Biomechanics, cavitation, hydraulic vulnerability, Norway spruce, radial compression strength, sapwoodAbstract
Hydraulic testing of isolated sapwood from mature tree trunks is time-consuming and prone to errors, whereas the measurement of compression strength is a standardized and rapid wood technological applica- tion. In this study, we aimed to analyze if compression stress perpendicular to the grain relates to hydraulic vulnerability of mature Norway spruce (Picea abies) trunk wood with an expected narrow vulnerability range. The sample-set comprised 52 specimens originating from 34 trees harvested in Sweden. Before mechanical testing, the P50, i.e., the water potential resulting in 50 % of hydraulic conductivity loss, was estimated on small sapwood beams employing the air injection method. Compression strength perpendicular to the grain was de- fined as the first peak of a stress-strain curve (peak stress) when the wood is subjected to radial compression. Peak stress ranged between 1,65 MPa and 5,07 MPa, P50 between -2,98 MPa and -1,98 MPa. We found a good correlation between the peak stress and P50 (r = 0,80; P < 0,0001). This provides further evidence that peak stress in radial compression and P50 are both extremely dependent on the characteristics of the “weakest” wood part, i.e., the highly conductive earlywood. We conclude that the radial compression strength is a good proxy for P50 of mature Norway spruce trunk wood.
Downloads
References
Adams, D.A.; Zeppel, M.J.B.; Anderegg, W.R.L.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D.; Anderegg, L.D.L.; Barron-Gafford, G.A.; Beer- ling, D.J.; Breshears, D.D.; Brodribb, T.J.; Bugmann, H.; Cobb, R.C.; Collins, A.D.; Dickman, L.T.; Duan, H.; Ewers, B.E.; Galiano, L.; Galvez, D.A.; Garcia-Forner, N.; Gaylord, M.L.; Germino, M.J.; Gessler, A.; Hacke, U.G.; Hakamada, R.; Hector, A.; Jenkins, M.W.; Kane, J.M.; Kolb, T.E.; Law, D.J.; Lewis, J.D.; Limousin, J.M.; Love, D.M.; Macalady, A.K.; Martínez-Vilalta, J.; Mencuccini, M.; Mitch- ell, P.J.; Muss, J.D.; O’Brien, M.J.; O’Grady, A.P.; Pangle, R.E.; Pinkard, E.A.; Piper, F.I.; Plaut, J.A.; Pockman, W.T.; Quirk, J.; Reinhardt, K.; Ripullone, F.; Ryan, M.G.; Sala, A.; Sevanto, S.; Sperry, J.S.; Vargas, R.; Vennetier, M.; Way, D.A.; Xu, C.; Yepez, E.A.; McDowell, N.G. 2017. A multi-species synthe- sis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution 1: 1285-1291. https://doi.org/10.1038/s41559-017-0248-x
Aimene, Y.A.; Nairn, J.A. 2015. Simulation of transverse wood compression using a large-deformation, hyperelastic-plastic material model. Wood Science and Technology 49: 21-39. https://doi.org/10.1007/s00226- 014-0676-6
Anfodillo, T.; Petit, G.; Crivellaro, A. 2013. Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA Journal 34: 352-364. https://doi.org/10.1163/22941932-00000030
Bouche, P.S.; Larter, M.; Domec, J.C.; Burlett, R.; Gasson, P.; Jansen, S.; Delzon, S. 2014. A broad survey of hydraulic and mechanical safety in the xylem of conifers. Journal of Experimental Botany 65: 4419- 4431. https://doi.org/10.1093/jxb/eru218
Brodribb, T.; Powers, J.; Cochard, H.; Choat, B. 2020. Hanging by a thread? Forests and drought. Science 368: 261-266. https://doi.org/10.1126/science.aat7631
Comstock, J.P. 2002. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. Journal of Experimental Botany 53: 195-200. https://doi.org/10.1093/jexbot/53.367.195
Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; Lopez, R.; Medlyn, B.E. 2018. Triggers of tree mortality under drought. Nature 558: 531-539. https://doi.org/10.1038/s41586-018-0240-x
Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; Jacobsen, A.L.; Lens, F.; Maherali, H.; Martínez-Vilalta, J.; Mayr, S.; Mencuccini, M.; Mitchell, P.J.; Nardini, A.; Pittermann, J.; Pratt, R.B.; Sperry, J.S.; Westoby, M.; Wright, I.J.; Zanne, A.E. 2012. Global convergence in the vulnerability of forests to drought. Nature 491:752- 755. https://doi.org/10.1038/nature11688
Cochard, H.; Badel, E.; Herbette, S.; Delzon, S.; Choat, B.; Jansen, S. 2013. Methods for mea- suring plant vulnerability to cavitation: a critical review. Journal of Experimental Botany 64: 4779-4791. https://doi.org/10.1093/jxb/ert193
Dlouhá, J.; Alméras, T.; Beauchêne, J.; Clair, B.; Fournier, M. 2018. Biophysical dependences among functional wood traits. Functional Ecology 32: 2652-2665. https://doi.org/10.1111/1365-2435.13209
Domec, J.C.; Gartner, B.L. 2001. Cavitation and water storage in bole segments of mature and young Douglas-fir trees. Trees 15: 204-214. https://doi.org/10.1007/s004680100095
Domec, J.C.; Warren, J.M.; Meinzer, F.C.; Lachenbruch, B. 2009. Safety for xylem failure by implo- sion and air-seeding within roots, trunks and branches of young and old conifer trees. IAWA Journal 30: 101- 120. https://doi.org/10.1163/22941932-90000207
Gindl, W.; Müller, U.; Teischinger, A. 2003. Effects of cell anatomy on the plastic and elastic behaviour of different wood species loaded perpendicular to grain. IAWA Journal 24: 117-128. https://doi.org/10.1163/22941 932-90000325
Hacke, U.G.; Sperry, J.S.; Pockman, W.T.; Davis, S.D.; McCulloh, K. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457-461. https://doi.org/10.1007/s004420100628
Hammond, W.M.; Yu, K.; Wilson, L.A.; Will, R.E.; Anderegg, W.R.L.; Adams, H.D. 2019. Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phy- tologist 223: 1834-1843. https://doi.org/10.1111/nph.15922
Huang, C.; Gong, M.; Chui, Y.; Cahn, F. 2020. Mechanical behaviour of wood compressed in radial direction-part I. New method of determining the yield stress of wood on the stress-strain curve. Journal of Bioresources and Bioproducts 5: 186-195. https://doi.org/10.1016/j.jobab.2020.07.004
Klein, T.; Cahanovitc, R.; Sprintsin, M.; Herr, N.; Schiller, G. 2019. A nation-wide analysis of tree mortality under climate change: Forest loss and its causes in Israel 1948-2017. Forest Ecology and Manage- ment 432: 840-849. https://doi.org/10.1016/j.foreco.2018.10.020
Luss, S. 2020. Methods to determine hydraulic vulnerability and other biological parameters in Nor- way spruce. Dissertation (PhD Thesis), University of Natural Resources and Life Sciences, Vienna, Austria. https://zidapps.boku.ac.at/abstracts/download.php?dataset_id=11502&property_id=107
Luss, S.; Lundqvist, S.O.; Evans, R.; Grahn, T.; Olsson, L.; Petit, G.; Rosner, S. 2019. Within-ring variability of wood structure and its relationship to drought sensitivity in Norway spruce trunks. IAWA Journal 40: 288-310. https://doi.org/10.1163/22941932-40190216
Mantova, M.; Menezes-Silva, P.E.; Badel, E.; Cochard, H.; Torres-Ruiz, J. M. 2021. The interplay of hydraulic failure and cell vitality explains tree capacity to recover from drought. Physiologia Plantarum 172: 247-257. https://doi.org/10.1111/ppl.13331
McDowell, N.G.; Allen, C.D. 2015. Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change 5: 669-672. https://doi.org/10.1038/nclimate2641
Müller, U.; Gindl, W.; Teischinger, A. 2003. Effects of cell wall anatomy on the plastic and elastic be- haviour of different wood species loaded perpendicular to grain. IAWA Journal 24: 117-128. https://brill.com/ view/journals/iawa/24/2/article-p117_2.xml
Olson, M.E.; Anfodillo, T.; Gleason, S.M.; McCulloh, K.A. 2021. Tip-to-base xylem conduit wid- ening as an adaptation: causes, consequences, and empirical priorities. New Phytologist 229: 1877-1893. https://doi.org/10.1111/nph.16961
Pammenter, N.W.; Vander Willigen, C. 1998. A mathematical and statistical analysis of the curves il- lustrating vulnerability of xylem to cavitation. Tree Physiology 18: 589-593. https://doi.org/10.1093/treeph- ys/18.8-9.589
Rockwell, F.E.; Wheeler, J.K.; Holbrook, N.M. 2014. Cavitation and its discontents: Opportunities for resolving current controversies. Plant Physiology 164: 1649-1660. https://doi.org/10.1104/pp.113.233817
Rosner, S. 2013. Hydraulic and biomechanical optimization in Norway spruce trunkwood: A review. IAWA Journal 34: 365-390. https://doi.org/10.1163/22941932-00000031
Rosner, S.; Gierlinger, N.; Klepsch, M.; Karlsson, B.; Evans, R.; Lundqvist, S.O.; Světlík, J.; Børja, I.; Dalsgaard, L.; Andreassen, K.; Solberg, S.; Jansen, S. 2018. Hydraulic and mechanical dysfunction of Norway spruce sapwood due to extreme summer drought in Scandinavia. Forest Ecology and Management 409: 527-540. https://doi.org/10.1016/j.foreco.2017.11.051
Rosner, S.; Heinze, B.; Savi, T.; Dalla-Salda, G. 2019. Prediction of hydraulic conductivity loss from relative water loss: new insights into water storage of tree stems and branches. Physiologia Plantarum 165: 843-854. https://doi.org/10.1111/ppl.12790
Rosner, S.; Karlsson B. 2011. Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood. Trees 25: 289-299. https://doi.org/10.1007/s00468-010-0505-y
Rosner, S.; Nöbauer, S.; Voggeneder, K. 2021. Ready for Screening: Fast assessable hydrau- lic and anatomical proxies for vulnerability to cavitation of young conifer sapwood. Forests 12: e1104. https://doi.org/10.3390/f12081104
Rosner, S.; Riegler, M.; Vontobel, P.; Mannes, D; Lehmann; E, Karlsson, B.; Hansmann, C. 2012. Within-ring movement of free water in dehydrating Norway spruce sapwood visualized by neutron radiogra- phy. Holzforschung 66: 751-756. https://doi.org/10.1515/hf-2011-0234
Rosner, S.; Světlík, J.; Andreassen, K.; Børja, I.; Dalsgaard, L.; Evans, R.; Luss, S.; Tveito, O.E.; Solberg, S. 2016. Novel hydraulic vulnerability proxies for a boreal conifer species reveal that opportun- ists may have lower survival prospects under extreme climatic events. Frontiers in Plant Science 7: e831. https://doi.org/10.3389/fpls.2016.00831
Spicer, R.; Gartner, B.L. 1998. Hydraulic properties of Douglas-fir (Pseudotsuga menziesii) branches and branch halves with references to compression wood. Tree Physiology 18: 777-784. https://doi.org/10.1093/ treephys/18.11.777
Thelandersson, S.; Larsen, H.J. 2003. Timber engineering. John Wiley & Sons: West Sussex, England.
Tyree, M.T.; Sperry, J.S. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology 40: 19-38. https://doi.org/10.1146/annurev.pp.40.060189.000315
Tyree, M.T.; Zimmermann, M.H. 2002. Xylem structure and the ascent of sap. 2nd edition, Springer: Berlin, Germany. https://link.springer.com/book/10.1007/978-3-662-04931-0
Venturas, M.D.; Sperry, J.S.; Hacke, U.G. 2017. Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology 59: 356-389. https://doi.org/10.1111/ jipb.12534
Wu, G.; Shen, Y.; Fu, F.; Guo, J.; Ren, H. 2022. Study of the mechanical properties of wood un- der transverse compression using Monto Carlo simulation-based stochastic FE analysis. Forests 13: e32. https://doi.org/10.3390/f13010032
Yan, S.; Eichhorn, S.J.; Toumpanaki, E. 2022. Numerical simulation of transverse compression and den- sification of wood. Wood Science and Technology 56: 1007-1027. https://doi.org/10.1007/s00226-022-01388-9
Zhong, Y.; Wu, G.; Fu, F.; Shen, Y.; Sun, J.; Ren, H.; Guo, J. 2022. A novel constitutive model for the porosity related super-large deformation and anisotropic behavior of wood under perpendicular to grain com- pression. Wood Science and Technology 56: 553-571. https://doi.org/10.1007/s00226-022-01361-6
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.