Characterization of nanocellulose/pyrolysis oil nanocomposite films

Authors

  • Mustafa Zor Zonguldak Bülent Ecevit University. Department of Nanotechnology Engineering. Zonguldak, Türkiye.
  • Engin Kocatürk Zonguldak Bülent Ecevit University. Department of Nanotechnology Engineering. Zonguldak, Türkiye.
  • Ferhat Şen Zonguldak Bülent Ecevit University. Department of Nanotechnology Engineering. Zonguldak, Türkiye.
  • Barlas Oran İstanbul University-Cerrahpasa, Department of Forest Industrial Engineering. İstanbul, Türkiye.
  • Zeki Candan İstanbul University-Cerrahpasa, Department of Forest Industrial Engineering. İstanbul, Türkiye.

DOI:

https://doi.org/10.22320/s0718221x/2024.25

Keywords:

Nanocellulose, pyrolysis oil, recycling, sustainable materials, thermal analysis

Abstract

In this study, the sustainable recycling of tire waste, which is frequently formed in the automotive industry, and the transformation of this recycling into valuable materials are in question. Waste tire pyrolysis oil obtained as a result of the pyrolysis of tire wastes was evaluated for the first time as a reinforcement element in nanocellulose-based nanocomposite films. Nanocellulose was produced using the TEMPO method (2,2,6,6-tetramethylpiperidine-1-oxyl radical). 5 %, 10 % and 20 % pyrolysis oil were added to the nanocomposite films. Thermal (thermal gravimetric analysis, differential scanning calorimetry, thermomechanical (dynamic mechanical thermal analysis and morphological (scanning electron microscopy) characterization of the produced nanocomposite films were performed. The highest thermal stability was observed in the nanocellulose/ pyrolysis oil-20 sample with 20% pyrolysis oil additive. The pyrolysis oil-reinforced nanocomposites resulted in an excellent increase in storage and loss modulus. The storage modulus of the 20 % pyrolysis oil added sample at 100 °C was exactly 18 times that of pure nanocellulose. Nanocellulose-based nanocomposite films with superior thermal properties and structural compatibility demonstrated by characterized results have been shown to be pioneers in future industrial applications such as pharmacy, coating, green packaging.

Downloads

Download data is not yet available.

References

Alsaleh, A.; Sattler, M.L. 2014. Waste tire pyrolysis: influential parameters and product properties. Current Sustainable/Renewable Energy Reports 1:129-135. https://doi.org/10.1007/s40518-014-0019-0

Boonbumrung, A.; Sae-Oui, P.; Sirisinha, C. 2016. Reinforcement of multiwalled carbon nanotube in nitrile rubber: in comparison with carbon black, conductive carbon black, and precipitated silica. Journal of Nanomaterials 2016: e6391572. https://doi.org/10.1155/2016/6391572

Candan, Z.; Gardner, D.J.; Shaler, S.M. 2016. Dynamic mechanical thermal analysis (DMTA) of cellulose nanofibril/nanoclay/pMDI nanocomposites. Composites Part B: Engineering 90: 126-132. https://doi.org/10.1016/j.compositesb.2015.12.016

Cho, M.J.; Park, B.D. 2011. Tensile and thermal properties of nanocellulose-reinforced poly (vinyl alcohol) nanocomposites. Journal of Industrial and Engineering Chemistry 17:36-40. https://doi.org/10.1016/j. jiec.2010.10.006

Dai, X.; Yin, X.; Wu, C.; Zhang, W.; Chen, Y. 2001. Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy 26: 385-399. https://doi.org/10.1016/S0360-5442(01)00003-2

Draman, S.F.S.; Daik, R.; Latif, F.A.; El-Sheikh, S.M. 2014. Characterization and thermal decomposition kinetics of kapok (Ceiba pentandra L.) based cellulose. BioResources 9:8-23. https://doi.org/10.15376/ biores.9.1.8-23

Fall, A.B.; Lindström, S.B.; Sundman, O.; Ödberg, L.; Wågberg, L. 2011. Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332-11338. https://doi.org/10.1021/la201947x

Guo, W.; Bai, S.; Ye, Y. 2022. High-value-added reutilization of resin pyrolytic oil: Pyrolysis process, oil detailed composition, and properties of pyrolytic oil-based composites. European Polymer Journal 166: e110969. https://doi.org/10.1016/j.eurpolymj.2021.110969

Gan, P.G.; Sam, S.T.; Abdullah, M.F.B.; Omar, M.F. 2020. Thermal properties of nanocellulose‐ reinforced composites: A review. Journal of Applied Polymer Science 137:e48544. https://doi.org/10.1002/ app.48544

Hu, H.; Fang, Y.; Liu, H.; Yu, R.; Luo, G.; Liu, W.; Li, A.; Yao, H. 2014. The fate of sulfur during rapid pyrolysis of scrap tires. Chemosphere 97:102-107. https://doi.org/10.1016/j.chemosphere.2013.10.037

Ighalo, J.O.; Iwuozor, K.O.; Ogunfowora, L.A.; Abdulsalam, A.; Iwuchukwu, F.U.; Itabana, B.; Bright, O.C.; Igwegbe, C.A. 2021. Regenerative desulphurisation of pyrolysis oil: A paradigm for the circular economy initiative. Journal of Environmental Chemical Engineering 9:e106864. https://doi.org/10.1016/j. jece.2021.106864

Iqbal, H.M.N.; Kyazze, G.; Keshavarz, T. 2013. Advances in the valorization of lignocellulosic materials by biotechnology: an overview. BioResources 8(2): 3157-3176. https://doi.org/10.15376/biores.8.2.3157-3176

Isogai, A.; Saito, T.; Fukuzumi, H. 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71-85. https://doi.org/10.1039/c0nr00583e

Karabork, F.; Tipirdamaz, S.T. 2016. Influence of pyrolytic carbon black and pyrolytic oil made from used tires on the curing and (dynamic) mechanical properties of natural rubber (NR)/styrene-butadiene rubber (SBR) blends. eXPRESS Polymer Letters 10(1): 72-82. https://doi.org/10.3144/expresspolymlett.2016.8

Kaminsky, W.; Mennerich, C.; Zhang, Z. 2009. Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed. Journal of Analytical and Applied Pyrolysis 85(1-2): 334-337. https://doi.org/10.1016/j.jaap.2008.11.012

Kebritchi, A.; Firoozifar, H.; Shams, K.; Jalali-Arani, A. 2013. Effect of pre-devulcanization and temperature on physical and chemical properties of waste tire pyrolytic oil residue. Fuel 112:319-325. https://doi.org/10.1016/j.fuel.2013.04.054

Kim, J.H.; Lee, D.; Lee, Y.H.; Chen, W.; Lee, S.Y. 2019. Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Advanced Materials 31(20): e1804826. https://doi.org/10.1002/ adma.201804826

Kumar, A.; Sharma, K.; Dixit, A.R. 2019. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. Journal of Materials Science 54:5992- 6026. https://doi.org/10.1007/s10853-018-03244-3

Levanic, J.; Šenk, V.P.; Nadrah, P.; Poljanšek, I.; Oven, P.; Haapala, A. 2020. Analyzing TEMPO- oxidized cellulose fiber morphology: New insights into optimization of the oxidation process and nanocellulose dispersion quality. ACS Sustainable Chemistry & Engineering 8:17752-17762. https://doi.org/10.1021/ acssuschemeng.0c05989

Martínez, J.D.; Murillo, R.; García, T.; Veses, A. 2013. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor. Journal of Hazardous Materials 261:637-645. https://doi.org/10.1016/j.jhazmat.2013.07.077

Miao, C.; Hamad, W.Y. 2019. Critical insights into the reinforcement potential of cellulose nanocrystals in polymer nanocomposites. Current Opinion in Solid State and Materials Science 23: e100761. https://doi.org/10.1016/j.cossms.2019.06.005

Prabhahar, R.S.S.; Vasiraja, N.; Shankar, E.M. 2022. Application of Prosopis juliflora based biooil in natural fibre reinforced composite laminates. Materials Today: Proceedings 62: 3411-3415. https://doi.org/10.1016/j.matpr.2022.04.272

Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. 2018. Nanocellulose: extraction and application. Carbon Resources Conversion 1:32-43. https://doi.org/10.1016/j.crcon.2018.05.004

Pennells, J.; Godwin, I.D.; Amiralian, N.; Martin, D.J. 2020. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 27: 575-593. https://doi.org/10.1007/s10570-019-02828-9

Priyadharshini, P.; Ramamurthy, K.; Robinson, R. G. 2019. Influence of temperature and duration of thermal treatment on properties of excavated soil as fine aggregate in cement mortar. Journal of Materials in Civil Engineering 31(8): e04019137. https://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0002759

Poyraz, B.; Güner Y.; Yardım T.; Yamanoğlu R.; Tozluoğlu, A.; Durmuş, S.; Şen, M. 2023. Influence of micro crystalline cellulose on EPDM based automotive sealing profile. Journal of Elastomers & Plastics 55(1):28-45. http://doi.org/10.1177/00952443221138915

Radakisnin, R.; Abdul-Majid, M.S.; Jamir, M.R.M.; Jawaid, M.; Sultan, M.T.H.; Mat Tahir, M.F. 2020. Structural, morphological and thermal properties of cellulose nanofibers from Napier fiber (Pennisetum purpureum). Materials 13:e4125. https://doi.org/10.3390/ma13184125

Rajasekaran, D.; Maji, P.K. 2021. Recycling of waste PP and crumb rubber together by use of self- healing ionomer as process compatibilizer. Journal of Material Cycles and Waste Management 23:1058-1070. https://doi.org/10.1007/s10163-021-01194-8

Roy, C.; Labrecque, B.; Caumia, B. 1990. Recycling of scrap tires to oil and carbon black by vacuum pyrolysis. Resources, Conservation and Recycling 4:203-213. https://doi.org/10.1016/0921-3449(90)90002-L

Syafiq, R.M.; Sapuan, S.M.; Zuhri, M.R. 2020. Effect of cinnamon essential oil on morphological, flammability and thermal properties of nanocellulose fibre–reinforced starch biopolymer composites. Nanotechnology Reviews 9:1147-1159. https://doi.org/10.1515/ntrev-2020-0087

Thomas, S.K.; Parameswaranpillai, J.; Krishnasamy, S.; Begum, P.S.; Nandi, D.; Siengchin, S.; George, J.J.; Hameed, N.; Salim, N.V.; Sienkiewicz, N.A. 2021. A comprehensive review on cellulose, chitin, and starch as fillers in natural rubber biocomposites. Carbohydrate Polymer Technologies and Applications 2:e100095. https://doi.org/10.1016/j.carpta.2021.100095

Thybring, E.E.; Fredriksson, M.; Zelinka, S.L.; Glass, S.V. 2022. Water in Wood: A Review of Current Understanding and Knowledge Gaps. Forests 13(12): e2051. https://doi.org/10.3390/f13122051

Verma, A.; Budiyal, L.; Sanjay, M.R.; Siengchin, S. 2019. Processing and characterization analysis of pyrolyzed oil rubber (from waste tires)‐epoxy polymer blend composite for lightweight structures and coatings applications. Polymer Engineering & Science 59:2041-2051. https://doi.org/10.1002/pen.25204

Williams, P.T. 2013. Pyrolysis of waste tyres: a review. Waste Management 33(8):1714-1728. https://doi.org/10.1016/j.wasman.2013.05.003

Williams, P.T.; Bottrill, R.P. 1995. Sulfur-polycyclic aromatic hydrocarbons in tyre pyrolysis oil. Fuel 74:736-742. https://doi.org/10.1016/0016-2361(94)00005-C

Yousefi, A.A.; Ait-Kadi, A.; Roy, C. 2000. Effect of used-tire-derived pyrolytic oil residue on the properties of polymer-modified asphalts. Fuel 79:975-986. https://doi.org/10.1016/S0016-2361(99)00216-1

Zor, M.; Mengeloğlu, F.; Aydemir, D.; Şen, F.; Kocatürk, E.; Candan, Z.; Ozcelik, O. 2023. Wood Plastic Composites (WPCs): Applications of Nanomaterials. In Emerging Nanomaterials. p. 97-133. https://doi.org/10.1007/978-3-031-17378-3_4

Downloads

Published

2024-01-09

How to Cite

Zor, M. ., Kocatürk, E. ., Şen, F. ., Oran, B. ., & Candan, Z. . (2024). Characterization of nanocellulose/pyrolysis oil nanocomposite films. Maderas. Ciencia Y Tecnología, 26, 1–10. https://doi.org/10.22320/s0718221x/2024.25

Issue

Section

Article