Performance characterization of plywood panels bonded with melamine-urea-formaldehyde resin and cellulose nanofibril/borax as an additive

Authors

  • Mert Yildirim Istanbul Gelisim University. Department of Industrial Engineering. Istanbul, Türkiye.
  • Zeki Candan Istanbul University-Cerrahpasa. Department of Forest Industrial Engineering. Istanbul, Türkiye.
  • Turgay Akbulut Istanbul University-Cerrahpasa. Department of Forest Industrial Engineering. Istanbul, Türkiye.
  • Douglas Gardner University of Maine. School of Forest Resources. AEWC Advanced Structures and Composites Center. Orono, Maine, USA.
  • Stephen Shaler University of Maine. School of Forest Resources. AEWC Advanced Structures and Composites Center. Orono, Maine, USA.

DOI:

https://doi.org/10.22320/s0718221x/2024.23

Keywords:

Borax, cellulose nanofibril, melamine-urea-formaldehyde resin, plywood panels

Abstract

In this study, different loading levels of cellulose nanofibril and borax were added as reinforcement in me- lamine-urea-formaldehyde adhesive to enhance the performance properties of plywood panels as engineered wood composites. Physical properties (density, thickness swelling, water absorption, and moisture content), mechanical properties (modulus of rupture, modulus of elasticity, and bonding strength), and formaldehyde content were tested using relevant standards. The results showed that cellulose nanofibril and borax had a synergistic effect, resulting in improved physico-mechanical properties. The best results were obtained by combining 3 % cellulose nanofibril and borax. It was determined that the combination of cellulose nanofibril and borax reinforcement resulted in a significant improvement of around 15 % in the thickness swelling, water absorption, and moisture content of plywood panels. The combination of cellulose nanofibril and borax rein- forcing resulted in a significant increase of around 26 % in the modulus of rupture and modulus of elasticity of plywood panels, with a bonding strength of around 47 %. The reinforcement technique did result in a 34 % decrease in free formaldehyde content. As a consequence, cellulose nanofibril and borax can be used as effec- tive additives in the production of plywood panels to enhance their performance properties.

Downloads

Download data is not yet available.

References

Akgul, M.; Camlibel, O. 2021. The use of borax pentahydrate of inorganic filler in medium density fiberbo- ard production. Maderas. Ciencia y Tecnología 23: 1-18. https://doi.org/10.4067/s0718-221x2021000100422

ASTM. 2006. Standard test methods for conducting machining tests of wood and wood-based materials.

ASTM D1037-06. ASTM: West Conshohocken, PA, USA.

Amini, E.; Tajvidi, M.; Bousfield, D.W.; Gardner, D.; Shaler, S. 2019. Dewatering Behavior of a Wo- od-Cellulose Nanofibril Particulate System. Scientific Reports 9: e14584. https://doi.org/10.1038/s41598-019- 51177-x

Antov, P.; Savov, V.; Neykov, N. 2020. Sustainable bio-based adhesives for eco-friendly wood composi- tes. A review. Wood Research 65(1): 51-62. https://doi.org/10.37763/wr.1336-4561/65.1.051062

Auriga, R.; Gumowska, A.; Szymanowski, K.; Wronka, A.; Robles, E.; Ocipka, P.; Kowaluk, G. 2020. Performance properties of plywood composites reinforced with carbon fibers. Composite Structures 248: e112533. https://doi.org/10.1016/j.compstruct.2020.112533

Ayrilmis, N. 2013. Combined effects of boron and compatibilizer on dimensional stability and mechanicalproperties of wood/HDPE composites. Composites Part B: Engineering 44(1): 745-749. https://doi.org/10.1016/j.compositesb.2012.04.002

Ayrilmis, N.; Lee, Y.K.; Kwon, J.H.; Han, T.H.; Kim, H.J. 2016. Formaldehyde Emission and VOCs from LVLs Produced with Three Grades of Urea-Formaldehyde Resin Modified with Nanocellulose. Building and Environment 97: 82-87. https://doi.org/10.1016/j.buildenv.2015.12.009

Candan, Z. 2012. Nanoparticles use in manufacture of wood-based sandwich panels and lamina- te flooring and its effects on technological properties. Ph.D. Thesis, Istanbul University, Istanbul, Türkiye. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp

Candan, Z.; Akbulut, T. 2013. Developing environmentally friendly wood composite panels by nanote- chnology. BioResources 8(3): 3590-3598. https://doi.org/10.15376/biores.8.3.3590-3598

Candan, Z.; Akbulut, T. 2014. Nano-engineered plywood panels: Performance properties. Composites Part B: Engineering 64: 155-161. https://doi.org/10.1016/j.compositesb.2014.04.021

Candan, Z.; Akbulut, T. 2015. Physical and mechanical properties of nanoreinforced particleboard com- posites. Maderas. Ciencia y Tecnología 17(2): 319-334. http://dx.doi.org/10.4067/S0718-221X2015005000030

Candan, Z.; Tozluoglu, A.; Gonultas, O.; Yildirim, M.; Fidan, H.; Alma, M.H.; Salan, T. 2022. Nano- cellulose: Sustainable biomaterial for developing novel adhesives and composites. Industrial Applications of Nanocellulose and Its Nanocomposites 2022: 49-137. https://doi.org/10.1016/B978-0-323-89909-3.00015-8

Claramunt, J.; Ventura, H.; Toledo Filho R.D.; Ardanuy, M. 2019. Effect of nanocelluloses on the microstructure and mechanical performance of CAC cementitious matrices. Cement and Concrete Research 119: 64-76. https://doi.org/10.1016/j.cemconres.2019.02.006

Colak, S.; Colakoglu, H. 2004. Volatile acetic acid and formaldehyde emission from plywood treated with boron compound. Building and Environment 39(5): 533-536, https://doi.org/10.1016/j.buildenv.2003.08.019

Colakoglu, G.; Demirkir, C. 2006. Characteristics of plywood panels produced with urea formaldehyde resin (UF) containing borax. Holz als Roh- und Werkstoff 64(3): 250-251. https://doi.org/10.1007/s00107-005- 0077-5

Donmez Cavdar, A.; Mengeloğlu, F.; Karakus, K. 2015. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement 60: 6-12. https://linkinghub.elsevier.com/retrieve/pii/S0263224114004588

Donmez Cavdar, A.; Tomak, E.D.; Mengeloglu, F. 2018. Long-Term Leaching Effect on Decay Resis- tance of Wood-Plastic Composites Treated with Boron Compounds. Journal of Polymers and the Environment 26(2): 756-764. https://doi.org/10.1007/s10924-017-0992-7

Efhamisisi, D.; Thevenon, M.F.; Hamze, Y.; Karimi, A.N.; Pizzi, A.; Pourtahmasi, K. 2016. Induced tannin adhesive by boric acid addition and its effect on bonding quality and biological performance of pop- lar plywood. ACS Sustainable Chemistry & Engineering 4(5): 2734-2740. https://doi.org/10.1021/acssusche- meng.6b00230

Ferdosian, F.; Pan, Z.; Gao, G.; Zhao, B. 2017. Bio-based adhesives and evaluation for wood composi- tes application. Polymers 9(2): 70-99. https://doi.org/10.3390/polym9020070

FAO. 2020. Global production and trade in forest products in 2020. https://www.fao.org/forestry/statisti- cs/80938/en

Hansted, F.A.S.; Hansted, A.L.S.; Padilha, E.R.D.; Caraschi, J.C.; Goveia, D.; Inácio de Campos, C. 2019. The use of nanocellulose in the production of medium density particleboard panels and the modification of its physical properties. BioResources 14(3): 5071-5079. https://doi.org/10.15376/biores.14.3.5071-5079

Hemmilä, V.; Adamopoulos, S.; Karlsson, O.; Kumar, A. 2017. Development of sustainable bio-ad- hesives for engineered wood panels - a review. RSC Advances 7(61): 38604-38630. https://doi.org/10.1039/ C7RA06598A

Kartal, S.N.; Terzi, E.; Yoshimura, T. 2019. Performance of fluoride and boron compounds against dr- ywood and subterranean termites and decay and mold fungi. Journal of Forestry Research 31(2): 1425-1434. https://doi.org/10.1007/s11676-019-00939-4

Kasmani, J.E.; Samariha, A. 2019. Effect of nano-cellulose on the improvement of the proper- ties of paper newspaper produced from chemi-mechanical pulping. BioResources 14(4): 8935-8949. https://doi.org/10.15376/biores.14.4.8935-8949

Kawalerczyk, J.; Dziurka, D.; Mirski, R.; Siuda, J.; Szentner, K. 2020. The effect of nanocellulose ad- dition to phenolformaldehyde adhesive in water-resistant plywood manufacturing. BioResources 15(3): 5388- 5401. https://doi.org/10.15376/biores.15.3.5388-5401

Kawalerczyk, J.; Dziurka, D.; Mirski, R.; Siuda, J. 2021. The reduction of adhesive application in plywood manufacturing by using nanocellulose‐ reinforced urea‐ formaldehyde resin. Journal of Applied Pol- ymer Science 138(7): e49834. https://doi.org/10.1002/app.49834

Leng, W.Q.; Hunt, J.F.; Tajvidi, M. 2017. Effects of density, cellulose nanofibrils addition ratio, pressing method, and particle size on the bending properties of wet-formed particleboard. BioResources 12(3): 4986- 5000. https://doi.org/10.15376/biores.12.3.4986-5000

Lengowski, E.C.; Bonfatti Junior, E.A.; Dallo, R.; Nisgoski, S.; de Mattos, J.L.M.; Prata, J.G. 2021. Nanocellulose-reinforced phenol-formaldehyde resin for plywood panel production. Maderas. Ciencia y Tec- nología 23: 1-10. https://doi.org/10.4067/s0718-221x2021000100405

Mantanis, G.I.; Athanassiadou, E.T.; Barbu, M.C.; Wijnendaele, K. 2018. Adhesive systems used in the European particleboard, MDF and OSB industries. Wood Material Science & Engineering 13(2): 104-116. https://doi.org/10.1080/17480272.2017.1396622

Pizzi, A. 2006. Recent developments in eco-efficient bio-based adhesives for wood bon- ding: opportunities and issues. Journal of Adhesion Science and Technology 20(8): 829-846. https://doi.org/10.1163/156856106777638635

Poyraz, B.; Tozluoglu, A.; Candan, Z.; Demir, A.; Yavuz, M.; Buyuksari, U.; Unal, H.I.; Fidan, H.; Saka, R.C. 2018. TEMPO treated CNF composites: Pulp an matrix effect. Fibers and Polymers 19(1): 195-204. https://link.springer.com/article/10.1007/s12221-018-7673-y

Salman, S.; Pétrissans, A.; Thévenon, M.F.; Dumarcay, S.; Perrin, D.; Pollier, B.; Gérardin, P. 2014. Development of new wood treatments combining boron impregnation and thermo modification: ef- fect of additives on boron leachability. European Journal of Wood and Wood Products 72(3): 355-365. https://doi.org/10.1007/s00107-014-0787-7

Sensogut, C.; Ozalp, M.; Yesil, H. 2009. The effect of borax pentahydrate addition to urea formaldehyde on the mechanical characteristics and free formaldehyde content of plywood. International Journal of Adhesi- on and Adhesives 29(5): 589-592. https://doi.org/10.1016/j.ijadhadh.2009.02.002

Sun, W.; Tajvidi, M.; Hunt, C.G.; McIntyre, G.; Gardner, D.J. 2019. Fully bio based hyb- rid composites made of wood, fungal mycelium and cellulose nanofibrils. Scientific Reports 9(1): e3766. https://www.nature.com/articles/s41598-019-40442-8

Terzi, E.; Kartal, S.N.; Gerardin, C.; Ibanez, M.; Yoshimura, T. 2017. Biological performan- ce of particleboard incorporated with boron minerals. Journal of Forestry Research 28(1): 195-203. https://link.springer.com/article/10.1007/s11676-016-0288-0

Tozluoglu, A.; Poyraz, B.; Candan, Z. 2018. Examining the efficiency of mechanic/enzymatic pret- reatments in micro/nanofibrillated cellulose production. Maderas. Ciencia y Tecnología 20(1): 67-84. https://doi.org/10.4067/S0718-221X2018005001601

TSI. 1999. Wood-based panels - Determination of modulus of elasticity in bending and of bending stren- gth. TS EN 310: Ankara, Türkiye.

TSI. 1999. Plywood-Bonding Quality-Part 2: Requirements. TS EN 314-2. Ankara, Türkiye.

TSI. 1999. Wood-based panels - Determination of swelling in thickness after immersion. TS EN 317.

Ankara, Türkiye.

TSI. 1999. Wood-based panels - Determination of moisture content. TS EN 322. Ankara, Türkiye.

TSI. 1999. Wood-based panels - Determination of density. TS EN 323. Ankara, Türkiye.

TSI. 1999. Wood based panels - Determination of formaldehyde content and extraction method called the perforator method. TS 4894 EN 120. Ankara, Türkiye.

TSI. 1998. Plywood-Bonding Quality-Part 1: Test Methods. TS 3969 EN 314-1. Ankara, Türkiye.

Veigel, S.; Rathke, J.; Weigl, M.; Gindl-Altmutter, W. 2012. Particle board and oriented strand board prepared with nanocellulose-reinforced adhesive. Journal of Nanomaterials 1: e158503. https://doi.org/10.1155/2012/158503

Vineeth, S.K.; Gadhave, R.V.; Gadekar, P.T. 2019. Nanocellulose applications in wood adhesives. Open Journal of Polymer Chemistry 9(4): 63-75. https://doi.org/10.4236/ojpchem.2019.94006

Yildirim, M.; Candan, Z. 2021. Performance Properties of Particleboard Panels Modified with Nanocel- lulose/Boric Acid. BioResources 16(1): 1875-1890. https://doi.org/10.15376/biores.16.1.1875-1890

Yildirim, M.; Negawo, T.A.; Kilic, A.; Candan, Z. 2021a. Development and characterization of hybrid composites from sustainable green materials. Green Materials 9(4): 182-191. https://doi.org/10.1680/ jgrma.20.00044

Yildirim, M.; Candan, Z.; Gonultas, O. 2021b. Chemical performance analysis of nanocellu- lose/boron-compound-reinforced hybrid UF resin. Green Materials 10(2): 90-96. https://hdl.handle. net/20.500.12885/1860

Yildirim, M.; Candan, Z.; Aksoy, B.; Dundar, T. 2023a. Performance properties of engineered wood composites reinforced by lignosulfonates. Green Materials 11(2): 60-68. https://doi.org/10.1680/jgr- ma.21.00069

Yildirim, M.; Mutlu, I.; Candan, Z. 2023b. Thermal properties of cellulose nanofibrils and ni- ckel-titanium alloy-reinforced sustainable smart composites. Wood Material Science & Engineering. https://doi.org/10.1080/17480272.2023.2267513

Zhang, H.; Zhang, J.; Song, S.; Wu, G.; Pu, J. 2011. Modified nanocrystalline cellulose from two kinds of modifiers used for improving formaldehyde emission and bonding strength of urea-formaldehyde resin adhesive. BioResources 6(4): 4430-4438. https://doi.org/10.15376/biores.6.4.4430-4438

Downloads

Published

2024-01-08

How to Cite

Yildirim, M. ., Candan, Z. ., Akbulut, T. ., Gardner, D. ., & Shaler, S. (2024). Performance characterization of plywood panels bonded with melamine-urea-formaldehyde resin and cellulose nanofibril/borax as an additive . Maderas-Cienc Tecnol, 26, 1–12. https://doi.org/10.22320/s0718221x/2024.23

Issue

Section

Article

Most read articles by the same author(s)