The effect of adding graphene oxide to urea formaldehyde resin and its efficacy on three layered particleboard

Authors

  • Seyed Meysam Mousazadeh Gonbad Kavous University. Faculty of Agriculture and Natural Resources. Department of Wood and Paper Science and Technology. Gonbad-e Kavus, Iran
  • Loya Jamalirad Gonbad Kavous University. Faculty of Agriculture and Natural Resources. Department of Wood and Paper Science and Technology. Gonbad-e Kavus, Iran
  • Farshid Faraji Gonbad Kavous University. Faculty of Agriculture and Natural Resources. Department of Wood and Paper Science and Technology. Gonbad-e Kavus, Iran
  • Ali Abdolkhani University of Tehran. Faculty of Natural Resources. Department of Wood and Paper Science and Technology. Tehran, Irán.

DOI:

https://doi.org/10.22320/s0718221x/2024.31

Keywords:

Particleboard, dimensional stability, graphene oxide, internal bonding, wood composites

Abstract

The research for improving adhesives and the properties of wood composites is always important for industry. The aim of this study is investigating the effect of adding graphene oxide in the UF resin on the functional properties of particleboard panels with an average thickness of 16 mm. The influence of graphene oxide content (0; 0,25 %; 0,5 % and 0,75 % based on the dry weight of the UF resin) and pressing time (4 and 5 minutes) on the internal bonding, bending strength, modulus of elasticity and dimensional stability were studied. The results showed that the use of graphene oxide in the UF resin caused an improvement of the mechanical and physical properties of the particleboards. Also, comparing two different pressing times, the boards made by 4 minutes with graphene oxide is preferred without negative effect on the functional properties of particleboards.

Downloads

Download data is not yet available.

References

Allen, M.J.; Tung, V.C.; Kaner, R.B. 2010. Honeycomb carbon: a review of graphene. Journal of Chemical Reviews 110(1): 132-145. https://dx.doi.org/10.1021/cr900070d

Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. 2008. Su- perior thermal conductivity of single-layer graphene. Nano Letters 8(3): 902-907. http://dx.doi.org/10.1021/ nl0731872

Balasubramanian, R.; Chowdhury, Sh. 2015. Recent advances and progress in the develop- ment of graphene-based adsorbents for CO2 capture. Journal of Materials Chemistry A 44: 21968-21989. https://doi.org/10.1039/c5ta04822b

Bose, S.; Pramanik, N.; Das, C.K.; Ranjan, A.; Saxena, A.K. 2010. Synthesis and effect of polyphospha- zenes on the thermal, mechanical and morphological properties of poly (etherimide)/thermotropic liquid crys- talline polymer blend. Materials & Design 31 (3): 1148-1155. https://doi.org/10.1016/j.matdes.2009.09.036

Cheng-An, T.; Hao, Z.; Fang, W.; Hui, Z.; Xiaorong, Z.; Jianfang, W. 2017. Mechanical proper- ties of graphene oxide/polyvinyl alcohol composite film. Polymers and Polymer Composites 25(1):11-16. https://doi.org/10.1177/096739111702500102

Cheng, X.; Kumar, V.; Yokozeki, T.; Goto, T.; Takahashi, T.; Koyanagi, J.; Wu, L.; Wang, R. 2016. Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneous- ly improved mechanical properties. Composites Part A: Applied Science and Manufacturing 82: 100-107. https://doi.org/10.1016/j.compositesa.2015.12.006

Dreyer, R.D.; Park, S.; Bielawski, C.W.; Ruoff, R.S. 2010. The chemistry of graphene oxide. Chemical Society Reviews 39 (1): 228-240. https://doi.org/10.1039/B917103G

Esmaeili, N.; Zohuriaan-Mehr, M.J.; Mohajeri, S.; Kabiri, K.; Bouhendi, H. 2017. Hydroxymethyl furfural-modified urea-formaldehyde resin: synthesis and properties. European Journal of Wood and Wood products 75(1): 71-80. https://doi.org/10.1007/s00107-016-1072-8

ES. 1993. Wood-based panels: Determination of modulus of elasticity in bending and of bending strength. EN 310. European Committee for Standardization (CEN).

ES. 1993. Particleboards and fiberboards – Determination of swelling in thickness after immersion in water. EN 317. European Committee for Standardization (CEN).

ES. 1993. Particleboards and fiberboards – Determination of tensile strength perpendicular to the plane of the board. EN 319. European Committee for Standardization (CEN).

Gao, X.; Jiang, D.E.; Zhao, Y.; Nagase, S.; Zhang, S.; Chen, Z. 2011. Theoretical insights into the structures of graphene oxide and its chemical conversions between graphene. Journal of computational and Theoretical Nanoscience 8(12): 2406-2422. https://doi.org/10.1166/jctn.2011.1972

Huang, X.M.; Liu, L.Z.; Zhou, S.; Zhao, J.J. 2020. Physical properties and device applications of graphene oxide. Frontiers of Physics 15(3): e33301. https://doi.org/10.1007/s11467-019-0937-9

Janiszewska, D.; Frackowiak, I.; Mytko, K. 2016. Exploitation of liquefied wood waste for binding recycled wood particleboards. Holzforschung 70(12):1135-1138. https://doi.org/10.1515/hf-2016-0043

Kim, H.; Abdala, A.A.; Macosko, C.W. 2010. Graphene/Polymer Nanocomposites. Macromolecules 43(16): 6515-6530. https://doi.org/10.1021/ma100572e

Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. 2010. Recent advances in graphene based polymer composites. Progress in Polymer Science 35(11):1350-1375. https://doi.org/10.1016/j.progpolyms- ci.2010.07.005

Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. 2012. Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polymer Testing 31(1): 31-38. https://doi.org/10.1016/j.polymertesting.2011.09.007

Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385-388. https://doi.org/10.1126/science.1157996

Liu, L.; Zhang, J.; Zhao, J.; Liu, F. 2012. Mechanical properties of graphene oxides. Nanoscale 4(19): 5910-5916. https://doi.org/10.1039/c2nr31164j

Moubarik, A.; Mansouri, H.R.; Pizzi, A.; Allal, A.; Charrier, F.; Badia, M.A.; Charrier, B. 2013 Evaluation of mechanical and physical properties of industrial particleboard bonded with a corn flour-urea formaldehyde adhesive. Composites Part B: Engineering 44(1):48-51. https://doi.org/10.106/j.compos- itesb.2012.07.041.

Perrozzi, F.; Prezioso, S.; Ottaviano, L. 2015. Graphene oxide: from fundamentals to applications. Jour- nal of Physics: Condensed Matter 27(1):1-21. https://doi.org/10.1088/0953-8984/27/1/013002.

Pinkl, S.; Herwijnen, H.W.G.; Veigel, V.; Gindl-Altmutter, W.; Riegler, M. 2018. Urea-formal- dehyde microspheres as a potential additive to wood adhesive. Journal of Wood Science 64: 390-397. https://doi.org/10.1007/s10086-018-1717-9

Poulin, P.; Jalili, R.; Neri, W.; Nallet, F.; Divoux, T.; Colin, A.; Aboutalebi, S.H.; Wallace, G.; Zakri, C. 2016. Superflexibility of graphene oxide. Proceedings of the National Academy of Sciences of the United States of America 113(40): 11088-11093. https://doi.org/10.1073/pnas.1605121113

Qu, P.; Huang, H.; Wu, G.; Sun, E.; Chang, Z. 2015. The effect of hydrolyzed soy protein isolate on the structure and biodegradability of urea-formaldehyde adhesives. Journal of Adhesion Science and Technology 29(6):502-517. https://doi.org/10.1080/01694243.2014.995909

Sarkar, S.; Kim, B. 2016. Synthesis of Graphene Oxide–Epoxy Resin Encapsulated Urea-Formaldehyde Microcapsule by In Situ Polymerization Process. Polymer Composites 39: 636-644. https://doi.org/10.1002/ pc.23979

Smith, A.T.; Lachance, A.M.; Zeng, S.; Liu, B.; Sun, L. 2019. Synthesis, properties, and applications of graphene oxide /reduced graphene oxide and their nanocomposites. Nano Materials Science 1(1): 31-47. https://doi.org/10.1016/j.nanoms.2019.02.004

Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7): 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034

Suk, J.W.; Piner, R.D.; An, J.; Ruoff, R.S. 2010. Mechanical properties of monolayer graphene oxide. ACS Nano 4(11): 6557-6564. https://doi.org/10.1021/nn101781v

Tadyszak, K.; Wychowaniec, J.; Litowczenko, J. 2018. Biomadical applications of graphene-based structures. Nanomaterials 8(11): e944. https://doi.org/10.3390/nano8110944

Warui Kariuki, S.; Wachira, J.; Kawira, M.; Murithi1, G. 2019. Formaldehyde Use and Alter- native Biobased Binders for Particleboard Formulation: A Review. Journal of Chemistry 2019: 1-12. https://doi.org/10.1155/2019/5256897

Yadav, M.; Rhee, K.Y.; Jung, I.H.; Park, S.J. 2013. Eco-friendly synthesis, characterization and prop- erties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20(2): 687-698. https://doi.org/10.1007/s10570-012-9855-5

Downloads

Published

2024-01-24

How to Cite

Mousazadeh, S. M. ., Jamalirad, L. ., Faraji, F. ., & Abdolkhani, A. . (2024). The effect of adding graphene oxide to urea formaldehyde resin and its efficacy on three layered particleboard. Maderas. Ciencia Y Tecnología, 26, 1–8. https://doi.org/10.22320/s0718221x/2024.31

Issue

Section

Article

Most read articles by the same author(s)