The effect of adding graphene oxide to urea formaldehyde resin and its efficacy on three layered particleboard
DOI:
https://doi.org/10.22320/s0718221x/2024.31Keywords:
Particleboard, dimensional stability, graphene oxide, internal bonding, wood compositesAbstract
The research for improving adhesives and the properties of wood composites is always important for industry. The aim of this study is investigating the effect of adding graphene oxide in the UF resin on the functional properties of particleboard panels with an average thickness of 16 mm. The influence of graphene oxide content (0; 0,25 %; 0,5 % and 0,75 % based on the dry weight of the UF resin) and pressing time (4 and 5 minutes) on the internal bonding, bending strength, modulus of elasticity and dimensional stability were studied. The results showed that the use of graphene oxide in the UF resin caused an improvement of the mechanical and physical properties of the particleboards. Also, comparing two different pressing times, the boards made by 4 minutes with graphene oxide is preferred without negative effect on the functional properties of particleboards.
Downloads
References
Allen, M.J.; Tung, V.C.; Kaner, R.B. 2010. Honeycomb carbon: a review of graphene. Journal of Chemical Reviews 110(1): 132-145. https://dx.doi.org/10.1021/cr900070d
Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. 2008. Su- perior thermal conductivity of single-layer graphene. Nano Letters 8(3): 902-907. http://dx.doi.org/10.1021/ nl0731872
Balasubramanian, R.; Chowdhury, Sh. 2015. Recent advances and progress in the develop- ment of graphene-based adsorbents for CO2 capture. Journal of Materials Chemistry A 44: 21968-21989. https://doi.org/10.1039/c5ta04822b
Bose, S.; Pramanik, N.; Das, C.K.; Ranjan, A.; Saxena, A.K. 2010. Synthesis and effect of polyphospha- zenes on the thermal, mechanical and morphological properties of poly (etherimide)/thermotropic liquid crys- talline polymer blend. Materials & Design 31 (3): 1148-1155. https://doi.org/10.1016/j.matdes.2009.09.036
Cheng-An, T.; Hao, Z.; Fang, W.; Hui, Z.; Xiaorong, Z.; Jianfang, W. 2017. Mechanical proper- ties of graphene oxide/polyvinyl alcohol composite film. Polymers and Polymer Composites 25(1):11-16. https://doi.org/10.1177/096739111702500102
Cheng, X.; Kumar, V.; Yokozeki, T.; Goto, T.; Takahashi, T.; Koyanagi, J.; Wu, L.; Wang, R. 2016. Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneous- ly improved mechanical properties. Composites Part A: Applied Science and Manufacturing 82: 100-107. https://doi.org/10.1016/j.compositesa.2015.12.006
Dreyer, R.D.; Park, S.; Bielawski, C.W.; Ruoff, R.S. 2010. The chemistry of graphene oxide. Chemical Society Reviews 39 (1): 228-240. https://doi.org/10.1039/B917103G
Esmaeili, N.; Zohuriaan-Mehr, M.J.; Mohajeri, S.; Kabiri, K.; Bouhendi, H. 2017. Hydroxymethyl furfural-modified urea-formaldehyde resin: synthesis and properties. European Journal of Wood and Wood products 75(1): 71-80. https://doi.org/10.1007/s00107-016-1072-8
ES. 1993. Wood-based panels: Determination of modulus of elasticity in bending and of bending strength. EN 310. European Committee for Standardization (CEN).
ES. 1993. Particleboards and fiberboards – Determination of swelling in thickness after immersion in water. EN 317. European Committee for Standardization (CEN).
ES. 1993. Particleboards and fiberboards – Determination of tensile strength perpendicular to the plane of the board. EN 319. European Committee for Standardization (CEN).
Gao, X.; Jiang, D.E.; Zhao, Y.; Nagase, S.; Zhang, S.; Chen, Z. 2011. Theoretical insights into the structures of graphene oxide and its chemical conversions between graphene. Journal of computational and Theoretical Nanoscience 8(12): 2406-2422. https://doi.org/10.1166/jctn.2011.1972
Huang, X.M.; Liu, L.Z.; Zhou, S.; Zhao, J.J. 2020. Physical properties and device applications of graphene oxide. Frontiers of Physics 15(3): e33301. https://doi.org/10.1007/s11467-019-0937-9
Janiszewska, D.; Frackowiak, I.; Mytko, K. 2016. Exploitation of liquefied wood waste for binding recycled wood particleboards. Holzforschung 70(12):1135-1138. https://doi.org/10.1515/hf-2016-0043
Kim, H.; Abdala, A.A.; Macosko, C.W. 2010. Graphene/Polymer Nanocomposites. Macromolecules 43(16): 6515-6530. https://doi.org/10.1021/ma100572e
Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. 2010. Recent advances in graphene based polymer composites. Progress in Polymer Science 35(11):1350-1375. https://doi.org/10.1016/j.progpolyms- ci.2010.07.005
Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. 2012. Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polymer Testing 31(1): 31-38. https://doi.org/10.1016/j.polymertesting.2011.09.007
Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385-388. https://doi.org/10.1126/science.1157996
Liu, L.; Zhang, J.; Zhao, J.; Liu, F. 2012. Mechanical properties of graphene oxides. Nanoscale 4(19): 5910-5916. https://doi.org/10.1039/c2nr31164j
Moubarik, A.; Mansouri, H.R.; Pizzi, A.; Allal, A.; Charrier, F.; Badia, M.A.; Charrier, B. 2013 Evaluation of mechanical and physical properties of industrial particleboard bonded with a corn flour-urea formaldehyde adhesive. Composites Part B: Engineering 44(1):48-51. https://doi.org/10.106/j.compos- itesb.2012.07.041.
Perrozzi, F.; Prezioso, S.; Ottaviano, L. 2015. Graphene oxide: from fundamentals to applications. Jour- nal of Physics: Condensed Matter 27(1):1-21. https://doi.org/10.1088/0953-8984/27/1/013002.
Pinkl, S.; Herwijnen, H.W.G.; Veigel, V.; Gindl-Altmutter, W.; Riegler, M. 2018. Urea-formal- dehyde microspheres as a potential additive to wood adhesive. Journal of Wood Science 64: 390-397. https://doi.org/10.1007/s10086-018-1717-9
Poulin, P.; Jalili, R.; Neri, W.; Nallet, F.; Divoux, T.; Colin, A.; Aboutalebi, S.H.; Wallace, G.; Zakri, C. 2016. Superflexibility of graphene oxide. Proceedings of the National Academy of Sciences of the United States of America 113(40): 11088-11093. https://doi.org/10.1073/pnas.1605121113
Qu, P.; Huang, H.; Wu, G.; Sun, E.; Chang, Z. 2015. The effect of hydrolyzed soy protein isolate on the structure and biodegradability of urea-formaldehyde adhesives. Journal of Adhesion Science and Technology 29(6):502-517. https://doi.org/10.1080/01694243.2014.995909
Sarkar, S.; Kim, B. 2016. Synthesis of Graphene Oxide–Epoxy Resin Encapsulated Urea-Formaldehyde Microcapsule by In Situ Polymerization Process. Polymer Composites 39: 636-644. https://doi.org/10.1002/ pc.23979
Smith, A.T.; Lachance, A.M.; Zeng, S.; Liu, B.; Sun, L. 2019. Synthesis, properties, and applications of graphene oxide /reduced graphene oxide and their nanocomposites. Nano Materials Science 1(1): 31-47. https://doi.org/10.1016/j.nanoms.2019.02.004
Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7): 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034
Suk, J.W.; Piner, R.D.; An, J.; Ruoff, R.S. 2010. Mechanical properties of monolayer graphene oxide. ACS Nano 4(11): 6557-6564. https://doi.org/10.1021/nn101781v
Tadyszak, K.; Wychowaniec, J.; Litowczenko, J. 2018. Biomadical applications of graphene-based structures. Nanomaterials 8(11): e944. https://doi.org/10.3390/nano8110944
Warui Kariuki, S.; Wachira, J.; Kawira, M.; Murithi1, G. 2019. Formaldehyde Use and Alter- native Biobased Binders for Particleboard Formulation: A Review. Journal of Chemistry 2019: 1-12. https://doi.org/10.1155/2019/5256897
Yadav, M.; Rhee, K.Y.; Jung, I.H.; Park, S.J. 2013. Eco-friendly synthesis, characterization and prop- erties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20(2): 687-698. https://doi.org/10.1007/s10570-012-9855-5
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.