Utilization of nanotalc modified adhesives in plywood panels
DOI:
https://doi.org/10.22320/s0718221x/2024.41Keywords:
Elastic modulus, nanotechnology, Pinus oocarpa, synthetic adhesives, wood adhesives, wood-composites, wood panelsAbstract
As an alternative for the partial replacement of synthetic adhesives are the modifications that occur still during their synthesis, to improve and adhere new properties. Among the possible materials used in nanoscale, talc is a mineral material of natural origin and a promising raw material due to its low cost, lightness, natural hydrophobicity. Due to the scarcity of studies with the insertion of nanotalc in adhesives, this study aimed to produce plywood panels bonded with phenol-formaldehyde adhesive nanomodified with talc to evaluate its physical-mechanical resistance when compared to conventional synthetic adhesives. To carry out this study, three Pinus oocarpa trees with 28 years of age were used. Different concentrations of talc were used in the formulation with the phenol-formaldehyde adhesive, being the treatments 0; 0,05; 1; 1,5 and 2 % of talc (mass/mass) in relation to the adhesive, with three panels per treatment, totaling 15 panels. The pressing time was 8 minutes with temperature of 160 ºC and pressure of 1 MPa. The physical-chemical characteristics of the lignocellulosic material and of the plywood panels were determined. The quality of the adhesive produced was demonstrated by its resistance to water absorption with the insertion of up to 2 % talc to the adhesive, reducing it considerably. From 1 % talc inserted, the plywood panels had their mechanical characteristics superior to those glued with pure phenol-formaldehyde adhesive. However, as the study is innovative in nature, further research should focus on the application and quality evaluation of other talc nanomodified adhesives on different types of wood panels.
Downloads
References
ABNT. 1986. Chapas de madeira compensada: classificação. NBR 9531. ABNT: Rio de Janeiro, Brasil.
ABNT. 1986. Painéis de madeira compensada: determinação do teor de umidade. NBR 9484. ABNT: Rio de Janeiro, Brasil.
ABNT. 2003. Madeira: determinação da densidade básica. NBR 11941. ABNT: Rio de Janeiro, Brasil.
ABNT. 2010. Madeira - determinação do material solúvel em etanoltolueno e em diclorometano e em acetona. NBR 148534. ABNT: Rio de Janeiro, Brasil.
ABNT. 2010. Pasta celulósica e madeira - Determinação de lignina insolúvel em ácido. NBR 7989. ABNT: Rio de Janeiro, Brasil.
ABNT. 2011. Compensados: determinação de absorção de água. NBR 9486. ABNT. Rio de Janeiro, Brasil.
ABNT. 2017. Papel, cartão, pastas celulósicas e madeira Determinação do resíduo (cinza) após a incine ração a 525°. NBR 13999. ABNT: Rio de Janeiro, Brasil.
Ahmadi-Dehnoei, A.; Ghasemirad, S. 2021. Designing of desired nanocomposite pressure-sensitive adhesives through tailoring the structural characteristics of polysilsesquioxane acrylic core-shell nanoparticles. International Journal of Adhesion and Adhesives 111: 1-21. https://doi.org/10.1016/j.ijadhadh.2021.102973
Andrade, N.C.; Sabino, T.P.F.; Terra, I.C.C.; Mendes, L.M.; Mendes, R.F. 2019. Painéis MDP produzidos com resíduos de extração de cellulose. Revista Brasileira de Ciências Agrárias 13: 1-9. https://doi.org/10.5039/agraria.v14i3a6446
Antov, P.; Savov, V.; Trichkov, N.; Krišťák, Ľ.; Réh, R.; Papadopoulos, A.N.; Taghiyari, H.R.; Pizzi, A.; Kunecová, D.; Pachikova, M. 2021b. Properties of High-Density Fiberboard Bonded with UreaFormaldehyde Resin and Ammonium Lignosulfonate as a Bio-Based Additive. Polymers 13(16): e2775. https://doi.org/10.3390/polym13162775
Auriga, R.; Gumowska, A.; Szymanowski, K.; Wronka, A.; Robles, E.; Ocipka, P.; Kowaluk, G. 2020. Performance Properties of plywood composites reinforced with carbon fibers. Composite Structures 248: 112-533. https://doi.org/10.1016/j.compstruct.2020.112533
Brito, F.M.S.; Silva, P.X.S.; Palumbo, S.K.C.; Guimarães Júnior, J.B.; Mendes, L.M. 2021. Techno logical characterization of particleboards constituted with pistachio shell (Pistacia vera) and Pinus oocarpa wood. Revista Brasileira de Ciências Agrárias 16(2): 1-8. https://doi.org/10.5039/agraria.v16i2a8902
Candan, Z.; Akbulut, T. 2015. Physical and mechanical properties of nanoreinforced particleboard composites. Maderas. Ciencia y Tecnologia 17: 319-334. https://dx.doi.org/10.4067/S0718-221X2015005000030
Carvalho, A.G.; Zanuncio, A.J.V.; Mori, F.A.; Mendes, R.F.; Mendes, L.M. 2016. Adesivos naturais e sintéticos em painéis compensados. Brazilian Journal of Wood Science 7(1): 28-35. https://periodicos.ufpel.edu.br/index.php/cienciadamadeira/article/view/6341
ECS. 1993. Wood-based panels: determination of modulus of elasticity in bending streng. EN-310. ESC: Brussels, Belgium.
ECS. 1993. Plywood: bonding quality: part 1: test methods. EN314-1. ESC: Brussels, Belgium.
Furtini, A.C.C.; Brito, F.S.; Guimarães Junior, M.; Furtini, J.S.O.; Pinto, L.M.A.; Protásio, T.P.; Mendes, L.M.; Guimarães Junior, J.B. 2022. Substitution of urea-formaldehyde by renewable phenolic compound for environmentally appropriate production of particleboards. Environmental Science and Pollution Research 29: 66562-66577 https://doi.org/10.1007/s11356-022-20468-8
Furtini, A.C.C.; Santos, C.A.; Garcia, H.V.S.; Brito, F.M.S.; Santos, T.P.; Mendes, L.M.; Guimarães Junior, J.B. 2021. The Performance of cross laminated timber panels made of Pinus oocarpa and Coffea ara- bica waste. Coffee Science 16: e161854. https://doi.org/10.25186/.v16i.1854
Gu, Y.; Cheng, L.; Gu, Z.; Hong, Y.; Li, Z.; Li, C. 2019. Preparation, characterization and properties of starch-based adhesive for wood-based panels. International Journal of Biological Macromolecules 134: 247- 254. https://doi.org/10.1016/j.ijbiomac.2019.04.088
Huang, Y.; Wen, O.; Xiong, Y.; Chen, Y.; Li, W.; Ren, J.; Zhong, H. 2023. Nanomaterials driven CRIS- PR/Cas-based biosensing strategies. Chemical Engineering Journal 474: e 145615. https://doi.org/10.1016/j.cej.2023.145615
Iwakiri, S.; Vargas, C.A.; Parchen, C.F.; Weber, C.; Batista, C.C.; Garbe, E.A.; Cit, E.J.; Prata, J.G. 2011. Avaliação da qualidade de painéis compensados produzidos com lâminas de madeira de Schizolobium amazonicum. Floresta 41: 451-458. http://dx.doi.org/10.5380/rf.v41i3.23991
Iwakiri, S.; Trianoski, R.; da Silva, A.L.; Stupp, A.M.; Cabral, B.M.; Vieira, H.C. 2020. Evaluatiom of physical and mechanical properties of particleboard produced from wood of Cupress torulosa in mixture with Pinus taeda. Floresta 50: 1478-1485. http://dx.doi.org/10.5380/rf.v50i3.61971
Kumar, C.; Leggate, W. 2022. An overview of bio-adhesives for engineered wood products. International Journal of Adhesion and Adhesives 118: 103-187. https://doi.org/10.1016/j.ijadhadh.2022.103187
Lengowski, E.C.; Bonfatti Junior, E.A.; Dallo, R.; Nisgoski, S.; Mattos, J.L.M.; Prata, J.G. 2021. Nanocellulose-reinforced phenol-formaldehyde resin for plywood panel production. Maderas. Ciencia y Tecnologia 23: 1-10. https://doi.org/10.4067/s0718-221x2021000100405
Lisboa, F.J.N.; Guimarães, Í.L.; Guimarães Junior, J.B.; Mendes, R.F.; Mendes, L.M.; Protásio, T.P. 2016. Potencial de utilização da madeira de Sclerolobium paniculatum, Myracrodruon urundeuva e Amburana cearensis para produção de compensados. Scientia Forestalis 44(109): 129-139. http://dx.doi.org/10.18671/scifor.v44n109.12
Machado, J.F.; Hillig, E.; Watzlawick, L.F.; Bednarczuk, E.; Tavares, E.L. 2018. Production of plywood panel for exterior use with Paricá and Embaúba timbers. Revista Árvore 42: 1-7. https://doi.org/10.1590/1806-90882018000400006
Magalhaes, M.A.; Vital, B.R.; Carneiro, A.C.O.; Silva, C.M.S.; Freitas Fialho, L.; Figueiró, C.G.; Ferreira, J.C. 2019. Adição de lignina Kraft à resina fenólica para a fabricação de compensados. Brazilian Journal of Wood Science 10:142-149. https://doi.org/10.12953/2177-6830/rcm.v10n2p142-149
Matos, A.C.; Guimarães Junior, J.B.; Borges, C.C.; Matos, L.C.; Ferreira, J.C.; Mendes, L.M. 2019. Influência de diferentes composições de lâminas de Schizolobium parahyba var. amazonicum (Huber ex Ducke) Barneby e Pinus oocarpa var. oocarpa (Schiede ex Schltdl) para produção de compensados multilaminados. Scientia Forestalis 47: 799-810. https://doi.org/10.18671/scifor.v47n124.21
Mendes, R.F.; Mendes, L.M.; Mendonça, L.L.; Guimarães Junior, J.B.; Mori, F.A. 2014. Qualidade de painéis aglomerados homogêneos produzidos com a madeira de clones de Eucalyptus urophylla. Cerne 20: 329-336. http://dx.doi.org/10.1590/01047760.201420021273
Mendonza, Z.M.S.H.; Borges, P.H.M.; Santos, E.A.; Penna, J.E.; Elias, M.P.S.; Morais, P.H.M. 2017. Estudo comparativo das propriedades físicas e mecânicas de painéis compensados e Laminated Veneer Lumber (LVL). Nativa 5: 588-593. https://periodicoscientificos.ufmt.br/ojs/index.php/nativa/article/view/5044
Nicolao, E.S.; Monteoliva, S.; Ciannamea, E.M.; Stefani, R. 2022. Plywoods of northeast Argentinian woods and soybean protein based ahdesives: relationship between morphological aspects of veneers and shear strength values. Maderas. Ciencia y Tecnología 3: 1-14. https://doi.org/10.4067/s0718-221x2022000100403
Pinati, E.; Faria, D.L.; Mendes, R.F.; Mendes, L.M.; Protásio, T.P.; Guimarães Junior, J.B. 2018. Painéis compensados sarrafeados produzidos com Pinus oocarpa, Castilla ulei e Acrocarpus fraxinifolius. Brazilian Journal Wood of Science 9: 199-208. https://doi.org/10.12953/2177-6830/rcm.v9n3p199-208x
Pizzi, A.; Papadopoulos, A.N.; Policardi, F. 2020. Wood Composites and Their Polymer Binders. Polymers 12(5): e1115. https://doi.org/10.3390/polym12051115
Reis, A.H.S.; Silva, D.W.; Vilela, A.P.; Mendes, R.F.; Mendes, L.M. 2019. Physical-mechanical Properties of Plywood Produced with Acrocarpus fraxinifolius and Pinus oocarpa. Floresta e Ambiente 26: 1-7. https://doi.org/10.1590/2179-8087.015717
Santos, C.A.; Furtini, A.C.C.; Villarruel, D.C.V.; Miranda, E.H.M.; Gomes, D.A.C.; Mendes, L.M.; Guimarães Junior, J.B. 2022. Aproveitamento das madeiras de Pinus oocarpa e Coffea arabica para produção de painéis de partículas orientadas (OSB). Research, Society and Development 11: 1-10. https://doi.org/10.33448/rsd-v11i3.26795
Savini, G.; Oréfice, R.L. 2020. Comparative study of HDPE composites reinforced with microtalc and nanotalcs: high performance filler for improving ductility at low concentration levels. Journal of Materials Research and Technology 9(6): 16387-16398. https://doi.org/10.1016/j.jmrt.2020.11.090
Shirmohammadli, Y.; Efhamisisi, D.; Pizzi, A. 2018. Tannins as a sustainable raw material for green chemistry: a review. Industrial Crops and Products 126: 316-332. https://doi.org/10.1016/j.indcrop.2018.10.034
Silva, L.F.M.; Magalhães, F.A.C.R.G.; Chaves, F.J.P.; Moura, M.F.S.F. 2010. Mode II Fracture Toughness of a Brittle and Ductile Adhesives as a Function of the Adhesives Thickness. The Journal of Adhesion 86(9): 891-905.https://doi.org/10.1080/00218464.2010.506155
Silveira, L.H.C.; Rezende, A.V.; Vale, A.T. 2013. Teor de umidade e densidade básica da madeira de nove espécies comerciais amazônicas. Acta Amazonica 43: 179-184. https://doi.org/10.1590/S0044-59672013000200007
Soares, S.S.; Guimarães Junior, J.B.; Mendes, L.M.; Mendes, R.F.; Protásio, T.P.; Lisboa, F.J.N. 2017.Valorização do bagaço de cana-de-açúcar na produção de painéis aglomerados de baixa densidade. Brazilian Journal of Wood Science 8: 64-73. https://doi.org/10.12953/2177-6830/rcm.v8n2p64-73
Souza, J.B.; Azevedo, T.K.B.; Sousa, T.B.; Silva, G.G.C.; Guimarães Junior, J.B.; Pimenta, A.S. 2020. Wood bonding with an adhesive based on tannins from Acacia mangium Wild. Bark from trees grownin North eastern Brazil. Revista Brasileira de Ciências Agrárias 15: 1-7. https://doi.org/10.5039/agraria.v15i4a8659
Thoeman, H.; Irle, M.; Sernek, M. 2010. Wood-Based Panels: An Introduction for Specialists. Cost action E49. Brunel University Press: London, England. ISBN 978-1-902316-82-6. https://www.cost.eu/uploads/2018/07/53630.pdf
Xiong, G.; Hong, L.; Ju, Z.; Lu, X.; Jin, J. 2023. Curing Process of Phenol Formaldehyde Resin for Plywood under Vacuum Conditions. Journal of Renewable Materials 11: 3447-3461. https://doi.org/10.32604/ jrm.2023.027430
Yang, W.; Rallini, M.; Natali, M.; Kenny, J.; Ma, P.; Dong, W.; Torre, L.; Puglia, D. 2019. Preparation and properties of adhesives based on phenoli cresing containing lignina micro and nanoparticles: A comparati- ve study. Materials & Design 161: 55-63. https://doi.org/10.1016/j.matdes.2018.11.032
Young, G.; Cheng, L.; Zhengbiao, G.; Hong, Y.; Zhaofeng, L.; Caiming, L. 2019. Preparation, charac- terization and properties of starch-based adhesive for wood-based panels. International Journal of Biological Macromolecules 134: 247-754. https://doi.org/10.1016/j.ijbiomac.2019.04.088
Yousfi, M.; Livi, S.; Dumas, A.; Le Roux, C.; Crépin-Leblond, J.; Greenhill-Hooper, M.; Du- chet-Rumeau, J. 2013. Use of new synthetic talc as reinforcing nanofillers for polypropylene and polya- mide 6 systems: Thermal and mechanical Properties. Journal of Colloid and Interface Science 403: 29-42. https://doi.org/10.1016/j.jcis.2013.04.019
Zhou, X.; Du, G. 2020. Applications of tannin resin adhesives in the wood industry. In Tannins - Structu- ral Properties, Biological Properties and Current Knowledge. https://doi.org/10.5772/intechopen.86424
Zidanes, U.L.; Lorenço, M.S.; Araujo, E. da S.; Dias, M.C.; Rodrigues, L.L.A.; Dores, B.R.B; Setter, C.; Guimarães Junior, J.B.; Tonoli, G.H.D.; Mori, F.A. 2023. Substitution of petrochemical compounds for polyphenols of natural origin reinforced with cellulose nanofibrils to formulate adhesives for wood bonding. Environmental Science and Pollution Research 30: 74426-74440. https://doi.org/10.1007/s11356-023-27655-1
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.