The wide variation of amazonian stocked hardwoods affecting natural resistance to arboreal termites over time
DOI:
https://doi.org/10.22320/s0718221x/2024.48Keywords:
Amazonian species, arboreal termites, basic density, biodeterioration, crystallinity, mass loss, organic extractives, tropical hardwood, xylophagous, natural resistanceAbstract
After forest suppression in mining areas, deterioration of stocked tropical hardwoods occurs at different rates and levels. Prioritizing logs to avoid wastage is challenging because the wide interspecific variability of wood traits makes natural resistance unpredictable. This work aimed to compare the biodeterioration of four Amazonian hardwoods from a mining stockyard to arboreal termite attacks over six weeks under laboratory conditions. The woods' chemical composition, anatomy, basic density, and crystallinity were determined. Mass loss and visual diagnosis of the specimens supported the biodegradability analyses. The species showed a wide range of mass loss after six weeks: Jacaranda copaia (pará-pará) - 15,2 %; Pseudopiptadenia suaveolens (timborana) - 0,8 %; Aegiphila integrifolia (tamanqueira) - 5,2 %; and Euxylophora paraensis (pau amarelo) - 0,5 %. Biodegradation did not stabilize over time for the lowest-density species. The crystallinity indicated the initial degradation of amorphous wood components, followed by a non-selective feeding mechanism. Gathering all species, increased extractive and lignin levels, fiber wall thickness, and basic density favored the natural wood resistance, oppositely to large vessel elements. The much lower basic density of J. copaia explains its lowest natural resistance. Wall thickness, pore diameter, and density overcame chemical composition on wood biodegradability. Low-density hardwoods stocked in mining yards are a priority for proper destinations.
Downloads
References
ABAL. 2017. Bauxita no Brasil - mineração responsável e competitividade. Abal: São Paulo, Brazil.
ABAL. 2023a. Perfil da Indústria Brasileira do Alumínio. Abal: São Paulo, Brazil.
ABAL. 2023b. Estatísticas: Nacionais. Abal: São Paulo, Brazil.
ABNT. 2003. Wood - determination of basic density. Rio de Janeiro. ABNT NBR 11941:2003. ABNT: Rio de Janeiro, RJ, Brazil.
ABNT. 2017. Paper, boards, pulps and wood - determination of residue (ash) on ignition at 525 °C. ABNT NBR 13999:2017. ABNT: Rio de Janeiro, RJ, Brazil.
ABNT. 2017. Cellulosic pulp and wood - determination of soluble material in water. ABNT NBR 14577:2017. ABNT: Rio de Janeiro, RJ, Brazil.
ABNT. 2010. Wood - determination of soluble matter in ethanol-toluene, in dichloromethane and in acetone. ABNT NBR 14853:2010. ABNT: Rio de Janeiro, RJ, Brazil.
ABNT. 2010. Pulp and wood - determination of acid-insoluble lignin. ABNT NBR 7989:2010. ABNT: Rio de Janeiro, RJ, Brazil.
ASTM. 2022. Standard method for laboratory evaluation of the wood and other cellulosic materials for resistance to termite. ASTM D3345-22. ASTM: Philadelphia: PA, USA.
Arango, R.A.; Green, F.; Hintz, K.; Lebow, P.K.; Miller, R.B. 2006. Natural durability of tropical and native woods against termite damage by Reticulitermes flavipes (Kollar). International Biodeterioration & Biodegradation 57(3): 146-150. https://doi.org/10.1016/j.ibiod.2006.01.007
Bajraktari, A.; Nunes, L.; Knapic, S.; Pimenta, R.; Pinto, T.; Duarte, S.; Miranda, I.; Pereira, H. 2018. Chemical characterization, hardness and termite resistance of Quercus cerris heartwood from Kosovo. Maderas. Ciencia y Tecnología 20(3): 305-314. http://dx.doi.org/10.4067/S0718-221X2018005003101
Baufleur, A.M.Y.; Stangerlin, D.M.; Gouveia, F.N.; Silva, A.S.V.S.; Oliveira, J.R.V.; Silveira, M.F.; Pimenta, A.S.; Melo, R.R. 2022. Resistance of acetylated Jacaranda copaia wood to termites and decaying fungi attack. Acta Amazonica 52(3): 264-269. https://doi.org/10.1590/1809-4392202200832
Benítez, V.; Franco, J.; Camargo, A.; Raimonda, P.; Mantero, C.; Ibáñez, C.M. 2021. Influence of initial wood moisture on decay process by two brownrot fungi. Maderas. Ciencia y Tecnología 23(34): e24. http://dx.doi.org/10.4067/s0718-221x2021000100434
Boerjan, W.; Ralph, J.; Baucher, M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54: 519-546. https://doi.org/10.1146/annurev.arplant.54.031902.134938
Bouramdane, Y.; Fellak, S.; Mansouri, F.E.; Boukir, A. 2022. Impact of natural degradation on the aged lignocellulose fibers of Moroccan cedar softwood: structural elucidation by infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Fermentation 8(12): e698. https://doi.org/10.3390/fermentation8120698
Brischke, C.; Welzbacher, C.R.; Gellerich, A.; Bollmus, S.; Humar, M.; Plaschkies, K.; Scheiding, W.; Alfredsen, G.; Acker, J.V.; Windt, I. 2014. Wood natural durability testing under laborato- ry conditions: results from a round-robin test. European Journal of Wood and Wood Products 72: 129-133. https://doi.org/10.1007/s00107-013-0764-6
Broda, M. 2020. Natural compounds for wood protection against fungi -a review. Molecules 25(15): e3538. https://doi.org/10.3390/molecules25153538
Browning, B.L. 1963. The chemistry of wood. Interscience: Warrenville, USA.
Carrillo, I.; Aguayo, M.G.; Valenzuela, S.; Mendonça, R.T.; Elissetche, J.P. 2015. Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with different wood density. Wood Research 60(1): 1-10. http://www.woodresearch.sk/wr/201501/01.pdf
Costa, F.N.; Cardoso, R.P.; Mendes, C.S.; Rodrigues, P.R.G.; Reis, A.R.S. 2019. Natural resistance of seven Amazon woods to xylophagous termite Nasutitermes octopilis (Banks). Floresta e Ambiente 26(3): e20170145. https://doi.org/10.1590/2179-8087.014517
Csanády, E.; Magoss, E.; Tolvaj, L. 2015. Quality of machined wood surfaces. Springer International Publishing: New York City, USA. https://link.springer.com/book/10.1007/978-3-319-22419-0
Dadzie, P.K. 2019. Between species and wood type variations in some physical, termite resistivity and microstructural properties of some logging residues of Pterygota macrocarpa and Terminalia superba. Inter- national Wood Products Journal 10(4): 149-161. https://doi.org/10.1080/20426445.2019.1693086
Dahali, R.; Lee, S.H.; Tahir, P.M.D.; Salim, S.; Hishamuddin, M.S.; Atikah, C.I.; Khoo, P.S.; Krysto- fiak, T.; Antov, P. 2023. Influence of Chrysoporthe deuterocubensis canker disease on the chemical properties and durability of Eucalyptus urograndis against wood rotting fungi and termite infestation. Forests 14(2): e350. https://doi.org/10.3390/f14020350
Dar, M.A.; Shaikh, A.A.; Pawar, K.D.; Pandit, R.S. 2018. Exploring the gut of Helicoverpa armigera for cellulose degrading bacteria and evaluation of a potential strain for lignocellulosic biomass deconstruction. Process Biochemistry 73: 142-153. https://doi.org/10.1016/j.procbio.2018.08.001
Deklerck, V.; De Ligne, L.; Espinoza, E.; Beeckman, H.; Bulcke, J.V.; Acker, J.V. 2020. Assessing the natural durability of xylarium specimens: mini-block testing and chemical fingerprinting for small-sized samples. Wood Science and Technology 54: 981-1000. https://doi.org/10.1007/s00226-020-01186-1
Diniz, A.G.; Cerqueira, L.V.B.M.P.; Ribeiro, T.K.O.; Costa, A.F.; Tiago, P.V. 2020. Pathogenicity of isolates of Fusarium incarnatum-equiseti species complex to Nasutitermes corniger (Blattodea: Termitidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). International Journal of Pest Management 68(2): 1-10. https://doi.org/10.1080/09670874.2020.1797232
Eggleton, P. 2000. Global patterns of termite diversity In Termites: Evolution, Sociality, Symbioses, Ecology. Springer: Dordrecht, Netherlands.
Evert, R.F. 2013. Esau´s plant anatomy. Blucher: São Paulo, Brazil.
França, T.S.F.A.; França, F.J.N.; Arango, R.A.; Woodward, B.M.; Arantes, M.D.C. 2016. Natural resistance of plantation grown African mahogany (Khaya ivorensis and Khaya senegalensis) from Brazil to wood-rot fungi and subterranean termites. International Biodeterioration & Biodegradation 107: 88-91. https://doi.org/10.1016/j.ibiod.2015.11.009
Franklin, G.L. 1945. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155(3924): 51-51. https://doi.org/10.1038/155051a0
Füchtner, S.; Thygesen, L.G. 2023. Subcellular level impact of extractives on brown rot decay of Norway spruce elucidated by confocal Raman microscopy and multivariate data analysis. Wood Science and Technology 57: 827-859. https://doi.org/10.1007/s00226-023-01476-4
Gallio, E.; Schulz, H.R.; Guerreiro, L.; Cruz, N.D.; Zanatta, P.; Silva Júnior, A.P. da; Gatto, D.A. 2020. Thermochemical behavior of Eucalyptus grandis wood exposed to termite attack. Maderas. Ciencia y Tecnología 22(2): 157-166. http://dx.doi.org/10.4067/S0718-221X2020005000202
Gascón-Garrido, P.; Oliver-Villanueva, J.V.; Ibiza-Palacios, M.S.; Militz, H.; Mai C.; Adamopoulos, S. 2013. Resistance of wood modified with different technologies against Mediterranean termites (Reticulitermes spp.). International Biodeterioration & Biodegradation 82: 13-16. https://doi.org/10.1016/j.ibiod.2012.07.024
IBRAM. 2021. Mineração industrial tem saldo positivo em 2020. Ibram: Brasília, Brazil
IAWA. 1989. List of microscope features for hardwood identification. IAWA Bulletin 10(3): 219-332. https://www.academia.edu/download/42652264/IAWA.Hardwood.List.pdf
Ismayati, M.; Nakagawa-Izum, A.; Ohi, H. 2018. Utilization of bark condensed tannin as natural preservatives against subterranean termite. IOP Conference Series: Earth and Environmental Science 166: e012016. https://doi.org/10.1088/1755-1315/166/1/012016
Jacobs, K.; Plaschkies, K.; Scheiding, W.; Weiß, B.; Melcher, E.; Conti, E.; Fojutowski, A.; Bayon, I. 2019. Natural durability of important European wood species against wood decay fungi. Part 2: field tests and fungal community. International Biodeterioration & Biodegradation 137: 118-126. https://doi.org/10.1016/j.ibiod.2018.12.002
Jesus, E.N.; Santos, T.S.; Ribeiro, G.T.; Orge, M.D.R.; Amorim, V.O.; Batista, R.C.R.C. 2016. Natural regeneration of plant species in revegetated mining areas. Floresta e Ambiente 23(2): 191-200. https://doi.org/10.1590/2179-8087.115914
Kafle, K.; Shin, H.; Lee, C.M.; Park, S.; Kim, S.H. 2015. Progressive structural changes of Avi- cel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis. Scientific Reports 5: e15102. https://doi.org/10.1038/srep15102
Karim, M.; Daryaei, M.G.; Torkaman, J.; Oladi, R.; Ghanbary, M.A.T.; Bari, E. 2016. In vivo investigation of chemical alteration in oak wood decayed by Pleurotus ostreatus. International Biodeterioration & Biodegradation 108: 127-132. https://doi.org/10.1016/j.ibiod.2015.12.012
Kennedy, F.; Phillips, G.O.; Willians, E.P.A. 1987. Wood and cellulosic: industrial utilization, biotechnology, structure, and properties. Ellis Horwood Ltd: New York, USA.
Kirker, G.T.; Blodgett, A.B.; Arango, R.A.; Lebow, P.K.; Clausen, C.A. 2013. The role of extractives in naturally durable wood species. International Biodeterioration & Biodegradation 82: 53-58. https://doi.org/10.1016/j.ibiod.2013.03.007
Klaassen, R.K.W.M. 2014. Speed of bacterial decay in waterlogged wood in soil and open water. International Biodeterioration & Biodegradation 86: 129-135. https://doi.org/10.1016/j.ibiod.2013.06.030
Lima, M.D.R.; Patrício, E.P.S.; Barros Junior, U.O.; Silva, R.C.C.; Bufalino, L.; Numazawa, S.; Hein, P.R.G.; Protásio, T.P. 2021. Colorimetry as a criterion for segregation of logging wastes from sustainable forest management in the Brazilian Amazon for bioenergy. Renewable Energy 163: 792-806. https://doi.org/10.1016/j.renene.2020.08.078
Ling, Z.; Wang, T.; Makarem, M.; Cintrón, M.S.; Cheng, H.N.; Kang, X.; Bacher, M.; Potthast, A.; Rosenau, T.; King, H.; Delhom, C.C.; Nam, S.; Edwards, J.V.; Kim, S.H.; Xu, F.; French, A.D. 2019. Effects of ball milling on the structure of cotton cellulose. Cellulose 26: 305-328. https://doi.org/10.1007/s10570-018-02230-x
Melo, R.R.; Stangerlin, D.M.; Campomanes Santana, R.R.; Pedrosa, T.D. 2015. Decay and termite resistance of particleboard manufactured from wood, bamboo and rice husk. Maderas. Ciencia y Tecnología 17(1): 55-62. http://dx.doi.org/10.4067/S0718-221X2015005000006.
Motic China Group Co. Ltd. 2022. Motic software. Motic Images Plus 3.0. Hong Kong, China.
Nazari, N.; Bahmani, M.; Kahyani, S.; Humar, M.; Koch, G. 2020. Geographic variations of the wood density and fiber dimensions of the Persian oak wood. Forests 11(9): e1003. https://doi.org/10.3390/f11091003
Nicholson, R.L.; Hammerschmid, T.R. 1992. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30: 369-389. https://doi.org/10.1146/annurev.py.30.090192.002101
Novita, N.; Amiruddin, H.; Ibrahim, H.; Jamil, T.M.; Syaukani, S.; Oguri, E.; Eguchi, K. 2020. In- vestigation of termite attack on cultural heritage buildings: a case study in Aceh Province, Indonesia. Insects 11(6): e385. https://doi.org/10.3390/insects11060385
Owoyemi, J.M.; Adiji, A.O.; Aladejana, J.T. 2017. Resistance of some indigenous tree species to termite attack in Nigeria. Journal of Agricultural and Urban Entomology 33(1): 10-18. https://doi.org/10.3954/1523-5475-33.1.10
Paes, J.B.; Guerra, S.C.S.; Silva, L.F.; Oliveira, J.G.L.; Teago, G.B.S. 2016. Effect of extractive con- tents on natural resistance of five different woods to xilophagaus termites attack. Ciencia Florestal 26(4): 1259-1269. https://doi.org/10.5902/1980509825137
Palanti, S.; Feci, E.; Anichini, M. 2015. Comparison between four tropical wood species for their resistance to marine borers (Teredo spp. and Limnoria spp.) in the Strait of Messina. International Biodeterioration & Biodegradation 104: 472-476. https://doi.org/10.1016/j.ibiod.2015.07.013
Reis, A.R.S.; Reis, L.P.; Alves Júnior, M.; Carvalho, J.C.; Silva, J.R. 2017. Natural resistance of four Amazon woods submitted to xylophagous fungal infection under laboratory conditions. Madera y Bosques 23(2): 155-162. https://doi.org/10.21829/myb.2017.232968
Ribeiro, M.X.; Bufalino, L.; Mendes, L.M.; Sá, V.A.; Santos, A.; Tonoli, G.H.D. 2014. Resistance of pine, Australian red cedar woods, and their derivate products to Cryptotermes brevis attack. Cerne 20(3): 433- 439. https://doi.org/10.1590/01047760201420031277
Romano, A.D.; Acda, M.N. 2017. Feeding preference of the drywood termite Cryptotermes cynocephalus (Kalotermitidae) against industrial tree plantation species in the Philippines. Journal of Asia-Pacific Entomology 20(4): 116-1164. https://doi.org/10.1016/j.aspen.2017.08.026
Santana, A.L.B.D.; Maranhão, C.A.; Santos, J.C.; Cunha, F.M.; Conceição, G.M.; Bieber, L.W.; Nascimento, M.S. 2010. Antitermitic activity of extractives from three Brazilian hardwoods against Nasutitermes corniger. International Biodeterioration & Biodegradation 64(1): 7-12. https://doi.org/10.1016/j.ibiod.2009.07.009
Scheffrahn, R.H.; Krecek, J.; Szalanski, A.L.; Austin, J.W. 2005. Synonymy of Neotropical Arboreal Termites Nasutitermes corniger and N. costalis (Isoptera: Termitidae: Nasutitermitinae), with evidence from morphology, genetics, and biogeography. Annals of the Entomological Society of America 98(3): 273-281. https://doi.org/10.1603/0013-8746(2005)098[0273:SONATN]2.0.CO;2
Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. 1959. An empirical method for estimating the de- gree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29(10): 786-794. https://doi.org/10.1177/004051755902901003
SEMAS. 2007. Lei Ordinária Nº 6958, de 3 de abril de 2007, doe Nº 30903, 12/04/2007. Governo do Estado do Pará, Belém, Brazil. https://www.semas.pa.gov.br/legislacao/files/pdf/435.pdf
SEMAS. 2015. Instrução normativa Nº 07, de 05 outubro de 2015, doe Nº 32.987, de 07/10/2015. Governo do Estado do Pará, Belém, Brazil. https://www.semas.pa.gov.br/legislacao/files/pdf/435.pdf
Stallbaun, P.H.; Barauna, E.E.P.; Paes, J.B.; Ribeiro, N.C.; Monteiro, T.C.; Arantes, M.D.C. 2017. Natural resistance of Sclerolobium paniculatum Vogel wood to termites in laboratory conditions. Floresta e Ambiente 24: e20160013. https://doi.org/10.1590/2179-8087.001316
Tarmadi, D.; Tobimatsu, Y.; Yamamura, M.; Miyamoto, T.; Miyagawa, Y.; Umezawa, T.; Yoshi- mura, T. 2018. NMR studies on lignocellulose deconstructions in the digestive system of the lower termite Coptotermes formosanus Shiraki. Scientific Reports 8: e1290. https://doi.org/10.1038/s41598-018-19562-0
Thaler, N.; Žlahtič, M.; Humar, M. 2014. Performance of recent and old sweet chestnut (Castanea sativa) wood. International Biodeterioration & Biodegradation 94: 141-145. https://doi.org/10.1016/j.ibiod.2014.06.016
Tofanica, B.M.; Cappelletto, E.; Gavrilescu, D.; Mueller, K. 2011. Properties of rapeseed (Brassica napus) stalks fibers. Journal of Natural Fibers 8(4): 241-262. https://doi.org/10.1080/15440478.2011.626189
Vasconcellos, A.; Moura, S. 2010. Wood litter consumption by three species of Nasutitermes termites in an area of the Atlantic Coastal Forest in northeastern Brazil. Journal of Insect Science 10(1): e72. https://doi.org/10.1673/031.010.7201
Zhao, X.; Guo, P.; Zhang, Z.; Peng, H. 2019. Anatomical features of branchwood and stem- wood of Betula costata Trautv. from natural secondary forests in China. BioResources 14(1): 1980-1991. http://dx.doi.org/10.15376/biores.14.1.1980-1991
Zhao, X.; Zhang, L.; Liu, D. 2012. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining 6(4): 465-482. https://doi.org/10.1002/bbb.1331
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.