The wide variation of amazonian stocked hardwoods affecting natural resistance to arboreal termites over time

Authors

  • Ana Kelly de Sousa Silva Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.
  • Marilia Castro Brasil Duarte Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.
  • Igor Do Vale Gonçalves Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.
  • Tiago Marcolino de Souza State University of Amapá. Chemical Engineering School. Macapá, Brazil.
  • Mario Tomazello University of São Paulo. Luiz de Queiroz College of Agriculture. Forestry Science Department. Piracicaba, Brazil.
  • Juliana Livian Lima de Abreu Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.
  • Marcela Gomes da Silva Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.
  • Lourival Mendes Federal University of Lavras. Forestry Science Department. Lavras, Brazil.
  • Cândido Ferreira de Oliveira Neto Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.
  • Lina Bufalino Federal Rural University of Amazonia. Agrarian Science Institute. Belém
  • Thiago de Paula Protásio Federal University of Lavras. Forestry Science Department. Lavras, Brazil.
  • Gracialda Costa Ferreira Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.

DOI:

https://doi.org/10.22320/s0718221x/2024.48

Keywords:

Amazonian species, arboreal termites, basic density, biodeterioration, crystallinity, mass loss, organic extractives, tropical hardwood, xylophagous, natural resistance

Abstract

After forest suppression in mining areas, deterioration of stocked tropical hardwoods occurs at different rates and levels. Prioritizing logs to avoid wastage is challenging because the wide interspecific variability of wood traits makes natural resistance unpredictable. This work aimed to compare the biodeterioration of four Amazonian hardwoods from a mining stockyard to arboreal termite attacks over six weeks under laboratory conditions. The woods' chemical composition, anatomy, basic density, and crystallinity were determined. Mass loss and visual diagnosis of the specimens supported the biodegradability analyses. The species showed a wide range of mass loss after six weeks: Jacaranda copaia (pará-pará) - 15,2 %; Pseudopiptadenia suaveolens (timborana) - 0,8 %; Aegiphila integrifolia (tamanqueira) - 5,2 %; and Euxylophora paraensis (pau amarelo) - 0,5 %. Biodegradation did not stabilize over time for the lowest-density species. The crystallinity indicated the initial degradation of amorphous wood components, followed by a non-selective feeding mechanism. Gathering all species, increased extractive and lignin levels, fiber wall thickness, and basic density favored the natural wood resistance, oppositely to large vessel elements. The much lower basic density of J. copaia explains its lowest natural resistance. Wall thickness, pore diameter, and density overcame chemical composition on wood biodegradability. Low-density hardwoods stocked in mining yards are a priority for proper destinations.

 

Downloads

Download data is not yet available.

Author Biographies

Ana Kelly de Sousa Silva, Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.

Biography

Marilia Castro Brasil Duarte, Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.

Biography

Igor Do Vale Gonçalves, Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.

Biography

Tiago Marcolino de Souza, State University of Amapá. Chemical Engineering School. Macapá, Brazil.

Biography

Mario Tomazello, University of São Paulo. Luiz de Queiroz College of Agriculture. Forestry Science Department. Piracicaba, Brazil.

Biography

Juliana Livian Lima de Abreu, Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.

Biography

Marcela Gomes da Silva, Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.

Biography

Lourival Mendes, Federal University of Lavras. Forestry Science Department. Lavras, Brazil.

Biography

Cândido Ferreira de Oliveira Neto, Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.

Biography

Lina Bufalino, Federal Rural University of Amazonia. Agrarian Science Institute. Belém

Biography

Thiago de Paula Protásio , Federal University of Lavras. Forestry Science Department. Lavras, Brazil.

Biography

Gracialda Costa Ferreira, Federal Rural University of Amazonia. Agrarian Science Institute. Belém, Brazil.

Biography

References

ABAL. 2017. Bauxita no Brasil - mineração responsável e competitividade. Abal: São Paulo, Brazil.

ABAL. 2023a. Perfil da Indústria Brasileira do Alumínio. Abal: São Paulo, Brazil.

ABAL. 2023b. Estatísticas: Nacionais. Abal: São Paulo, Brazil.

ABNT. 2003. Wood - determination of basic density. Rio de Janeiro. ABNT NBR 11941:2003. ABNT: Rio de Janeiro, RJ, Brazil.

ABNT. 2017. Paper, boards, pulps and wood - determination of residue (ash) on ignition at 525 °C. ABNT NBR 13999:2017. ABNT: Rio de Janeiro, RJ, Brazil.

ABNT. 2017. Cellulosic pulp and wood - determination of soluble material in water. ABNT NBR 14577:2017. ABNT: Rio de Janeiro, RJ, Brazil.

ABNT. 2010. Wood - determination of soluble matter in ethanol-toluene, in dichloromethane and in acetone. ABNT NBR 14853:2010. ABNT: Rio de Janeiro, RJ, Brazil.

ABNT. 2010. Pulp and wood - determination of acid-insoluble lignin. ABNT NBR 7989:2010. ABNT: Rio de Janeiro, RJ, Brazil.

ASTM. 2022. Standard method for laboratory evaluation of the wood and other cellulosic materials for resistance to termite. ASTM D3345-22. ASTM: Philadelphia: PA, USA.

Arango, R.A.; Green, F.; Hintz, K.; Lebow, P.K.; Miller, R.B. 2006. Natural durability of tropical and native woods against termite damage by Reticulitermes flavipes (Kollar). International Biodeterioration & Biodegradation 57(3): 146-150. https://doi.org/10.1016/j.ibiod.2006.01.007 DOI: https://doi.org/10.1016/j.ibiod.2006.01.007

Bajraktari, A.; Nunes, L.; Knapic, S.; Pimenta, R.; Pinto, T.; Duarte, S.; Miranda, I.; Pereira, H. 2018. Chemical characterization, hardness and termite resistance of Quercus cerris heartwood from Kosovo. Maderas. Ciencia y Tecnología 20(3): 305-314. http://dx.doi.org/10.4067/S0718-221X2018005003101 DOI: https://doi.org/10.4067/S0718-221X2018005003101

Baufleur, A.M.Y.; Stangerlin, D.M.; Gouveia, F.N.; Silva, A.S.V.S.; Oliveira, J.R.V.; Silveira, M.F.; Pimenta, A.S.; Melo, R.R. 2022. Resistance of acetylated Jacaranda copaia wood to termites and decaying fungi attack. Acta Amazonica 52(3): 264-269. https://doi.org/10.1590/1809-4392202200832 DOI: https://doi.org/10.1590/1809-4392202200832

Benítez, V.; Franco, J.; Camargo, A.; Raimonda, P.; Mantero, C.; Ibáñez, C.M. 2021. Influence of initial wood moisture on decay process by two brown-rot fungi. Maderas. Ciencia y Tecnología 23(34): 1-12. http://dx.doi.org/10.4067/s0718-221x2021000100434 DOI: https://doi.org/10.4067/S0718-221X2021000100434

Boerjan, W.; Ralph, J.; Baucher, M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54: 519-546. https://doi.org/10.1146/annurev.arplant.54.031902.134938 DOI: https://doi.org/10.1146/annurev.arplant.54.031902.134938

Bouramdane, Y.; Fellak, S.; Mansouri, F.E.; Boukir, A. 2022. Impact of natural degradation on the aged lignocellulose fibers of Moroccan cedar softwood: structural elucidation by infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Fermentation 8(12): e698. https://doi.org/10.3390/fermentation8120698 DOI: https://doi.org/10.3390/fermentation8120698

Brischke, C.; Welzbacher, C.R.; Gellerich, A.; Bollmus, S.; Humar, M.; Plaschkies, K.; Scheiding, W.; Alfredsen, G.; Acker, J.V.; Windt, I. 2014. Wood natural durability testing under laboratory conditions: results from a round-robin test. European Journal of Wood and Wood Products 72: 129-133. https://doi.org/10.1007/s00107-013-0764-6 DOI: https://doi.org/10.1007/s00107-013-0764-6

Broda, M. 2020. Natural compounds for wood protection against fungi -a review. Molecules 25(15): e3538. https://doi.org/10.3390/molecules25153538 DOI: https://doi.org/10.3390/molecules25153538

Browning, B.L. 1963. The chemistry of wood. Interscience, Warrenville, USA.

Carrillo, I.; Aguayo, M.G.; Valenzuela, S.; Mendonça, R.T.; Elissetche, J.P. 2015. Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with different wood density. Wood Research 60(1): 1-10. http://www.woodresearch.sk/wr/201501/01.pdf

Costa, F.N.; Cardoso, R.P.; Mendes, C.S.; Rodrigues, P.R.G.; Reis, A.R.S. 2019. Natural resistance of seven Amazon woods to xylophagous termite Nasutitermes octopilis (Banks). Floresta e Ambiente 26(3): e20170145. https://doi.org/10.1590/2179-8087.014517 DOI: https://doi.org/10.1590/2179-8087.014517

Csanády, E.; Magoss, E.; Tolvaj, L. 2015. Quality of machined wood surfaces. Springer International Publishing, New York City, USA. https://link.springer.com/book/10.1007/978-3-319-22419-0 DOI: https://doi.org/10.1007/978-3-319-22419-0

Dadzie, P.K. 2019. Between species and wood type variations in some physical, termite resistivity and microstructural properties of some logging residues of Pterygota macrocarpa and Terminalia superba. International Wood Products Journal 10(4): 149-161. https://doi.org/10.1080/20426445.2019.1693086 DOI: https://doi.org/10.1080/20426445.2019.1693086

Dahali, R.; Lee, S.H.; Tahir, P.M.D.; Salim, S.; Hishamuddin, M.S.; Atikah, C.I.; Khoo, P.S.; Krystofiak, T.; Antov, P. 2023. Influence of Chrysoporthe deuterocubensis canker disease on the chemical properties and durability of Eucalyptus urograndis against wood rotting fungi and termite infestation. Forests 14(2): e350. https://doi.org/10.3390/f14020350 DOI: https://doi.org/10.3390/f14020350

Dar, M.A.; Shaikh, A.A.; Pawar, K.D.; Pandit, R.S. 2018. Exploring the gut of Helicoverpa armigera for cellulose degrading bacteria and evaluation of a potential strain for lignocellulosic biomass deconstruction. Process Biochemistry 73: 142-153. https://doi.org/10.1016/j.procbio.2018.08.001 DOI: https://doi.org/10.1016/j.procbio.2018.08.001

Deklerck, V.; De Ligne, L.; Espinoza, E.; Beeckman, H.; Bulcke, J.V.; Acker, J.V. 2020. Assessing the natural durability of xylarium specimens: mini-block testing and chemical fingerprinting for small-sized samples. Wood Science and Technology 54: 981-1000. https://doi.org/10.1007/s00226-020-01186-1 DOI: https://doi.org/10.1007/s00226-020-01186-1

Diniz, A.G.; Cerqueira, L.V.B.M.P.; Ribeiro, T.K.O.; Costa, A.F.; Tiago, P.V. 2020. Pathogenicity of isolates of Fusarium incarnatum-equiseti species complex to Nasutitermes corniger (Blattodea: Termitidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). International Journal of Pest Management 68(2): 1-10. https://doi.org/10.1080/09670874.2020.1797232 DOI: https://doi.org/10.1080/09670874.2020.1797232

Eggleton, P. 2000. Global patterns of termite diversity. Kluwer Academic Publishers, Dordrecht, Netherlands. https://doi.org/10.1007/978-94-017-3223-9_2 DOI: https://doi.org/10.1007/978-94-017-3223-9_2

Evert, R.F. 2013. Esau´s plant anatomy. Blucher, São Paulo, Brazil.

França, T.S.F.A.; França, F.J.N.; Arango, R.A.; Woodward, B.M.; Arantes, M.D.C. 2016. Natural resistance of plantation grown African mahogany (Khaya ivorensis and Khaya senegalensis) from Brazil to wood-rot fungi and subterranean termites. International Biodeterioration & Biodegradation 107: 88-91. https://doi.org/10.1016/j.ibiod.2015.11.009 DOI: https://doi.org/10.1016/j.ibiod.2015.11.009

Franklin, G.L. 1945. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155(3924): 51-51. https://doi.org/10.1038/155051a0 DOI: https://doi.org/10.1038/155051a0

Füchtner, S.; Thygesen, L.G. 2023. Subcellular level impact of extractives on brown rot decay of Norway spruce elucidated by confocal Raman microscopy and multivariate data analysis. Wood Science and Technology 57: 827-859. https://doi.org/10.1007/s00226-023-01476-4 DOI: https://doi.org/10.1007/s00226-023-01476-4

Gallio, E.; Schulz, H.R.; Guerreiro, L.; Cruz, N.D.; Zanatta, P.; Silva Júnior, A.P. da; Gatto, D.A. 2020. Thermochemical behavior of Eucalyptus grandis wood exposed to termite attack. Maderas. Ciencia y Tecnología 22(2): 157-166. http://dx.doi.org/10.4067/S0718-221X2020005000202 DOI: https://doi.org/10.4067/S0718-221X2020005000202

Gascón-Garrido, P.; Oliver-Villanueva, J.V.; Ibiza-Palacios, M.S.; Militz, H.; Mai C.; Adamopoulos, S. 2013. Resistance of wood modified with different technologies against Mediterranean termites (Reticulitermes spp.). International Biodeterioration & Biodegradation 82: 13-16. https://doi.org/10.1016/j.ibiod.2012.07.024 DOI: https://doi.org/10.1016/j.ibiod.2012.07.024

IBRAM. 2021. Mineração industrial tem saldo positivo em 2020. Ibram, Brasília, Brazil

IAWA. 1989. List of microscope features for hardwood identification. IAWA Bulletin 10(3): 219-332. https://www.academia.edu/download/42652264/IAWA.Hardwood.List.pdf

Ismayati, M.; Nakagawa-Izum, A.; Ohi, H. 2018. Utilization of bark condensed tannin as natural preservatives against subterranean termite. IOP Conference Series: Earth and Environmental Science 166: e012016. https://doi.org/10.1088/1755-1315/166/1/012016 DOI: https://doi.org/10.1088/1755-1315/166/1/012016

Jacobs, K.; Plaschkies, K.; Scheiding, W.; Weiß, B.; Melcher, E.; Conti, E.; Fojutowski, A.; Bayon, I. 2019. Natural durability of important European wood species against wood decay fungi. Part 2: field tests and fungal community. International Biodeterioration & Biodegradation 137: 118-126. https://doi.org/10.1016/j.ibiod.2018.12.002 DOI: https://doi.org/10.1016/j.ibiod.2018.12.002

Jesus, E.N.; Santos, T.S.; Ribeiro, G.T.; Orge, M.D.R.; Amorim, V.O.; Batista, R.C.R.C. 2016. Natural regeneration of plant species in revegetated mining areas. Floresta e Ambiente 23(2): 191-200. https://doi.org/10.1590/2179-8087.115914 DOI: https://doi.org/10.1590/2179-8087.115914

Kafle, K.; Shin, H.; Lee, C.M.; Park, S.; Kim, S.H. 2015. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis. Scientific Reports 5: e15102. https://doi.org/10.1038/srep15102 DOI: https://doi.org/10.1038/srep15102

Karim, M.; Daryaei, M.G.; Torkaman, J.; Oladi, R.; Ghanbary, M.A.T.; Bari, E. 2016. In vivo investigation of chemical alteration in oak wood decayed by Pleurotus ostreatus. International Biodeterioration & Biodegradation 108: 127-132. https://doi.org/10.1016/j.ibiod.2015.12.012 DOI: https://doi.org/10.1016/j.ibiod.2015.12.012

Kennedy, F.; Phillips, G.O.; Willians, E.P.A. 1987. Wood and cellulosic: industrial utilization, biotechnology, structure, and properties. Ellis Horwood Ltd, New York, USA.

Kirker, G.T.; Blodgett, A.B.; Arango, R.A.; Lebow, P.K.; Clausen, C.A. 2013. The role of extractives in naturally durable wood species. International Biodeterioration & Biodegradation 82: 53-58. https://doi.org/10.1016/j.ibiod.2013.03.007 DOI: https://doi.org/10.1016/j.ibiod.2013.03.007

Klaassen, R.K.W.M. 2014. Speed of bacterial decay in waterlogged wood in soil and open water. International Biodeterioration & Biodegradation 86: 129-135. https://doi.org/10.1016/j.ibiod.2013.06.030 DOI: https://doi.org/10.1016/j.ibiod.2013.06.030

Lima, M.D.R.; Patrício, E.P.S.; Barros Junior, U.O.; Silva, R.C.C.; Bufalino, L.; Numazawa, S.; Hein, P.R.G.; Protásio, T.P. 2021. Colorimetry as a criterion for segregation of logging wastes from sustainable forest management in the Brazilian Amazon for bioenergy. Renewable Energy 163: 792-806. https://doi.org/10.1016/j.renene.2020.08.078 DOI: https://doi.org/10.1016/j.renene.2020.08.078

Ling, Z.; Wang, T.; Makarem, M.; Cintrón, M.S.; Cheng, H.N.; Kang, X.; Bacher, M.; Potthast, A.; Rosenau, T.; King, H.; Delhom, C.C.; Nam, S.; Edwards, J.V.; Kim, S.H.; Xu, F.; French, A.D. 2019. Effects of ball milling on the structure of cotton cellulose. Cellulose 26: 305-328. https://doi.org/10.1007/s10570-018-02230-x DOI: https://doi.org/10.1007/s10570-018-02230-x

Melo, R.R.; Stangerlin, D.M.; Campomanes Santana, R.R.; Pedrosa, T.D. 2015. Decay and termite resistance of particleboard manufactured from wood, bamboo and rice husk. Maderas. Ciencia y Tecnología 17(1): 55-62. http://dx.doi.org/10.4067/S0718-221X2015005000006. DOI: https://doi.org/10.4067/S0718-221X2015005000006

Motic China Group Co. Ltd. 2022. Motic software - Motic Images Plus 3.0. Hong Kong, China.

Nazari, N.; Bahmani, M.; Kahyani, S.; Humar, M.; Koch, G. 2020. Geographic variations of the wood density and fiber dimensions of the Persian oak wood. Forests 11(9): e1003. https://doi.org/10.3390/f11091003 DOI: https://doi.org/10.3390/f11091003

Nicholson, R.L.; Hammerschmid, T.R. 1992. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30: 369-389. https://doi.org/10.1146/annurev.py.30.090192.002101 DOI: https://doi.org/10.1146/annurev.py.30.090192.002101

Novita, N.; Amiruddin, H.; Ibrahim, H.; Jamil, T.M.; Syaukani, S.; Oguri, E.; Eguchi, K. 2020. Investigation of termite attack on cultural heritage buildings: a case study in Aceh Province, Indonesia. Insects 11(6): e385. https://doi.org/10.3390/insects11060385 DOI: https://doi.org/10.3390/insects11060385

Owoyemi, J.M.; Adiji, A.O.; Aladejana, J.T. 2017. Resistance of some indigenous tree species to termite attack in Nigeria. Journal of Agricultural and Urban Entomology 33(1): 10-18. https://doi.org/10.3954/1523-5475-33.1.10 DOI: https://doi.org/10.3954/1523-5475-33.1.10

Paes, J.B.; Guerra, S.C.S.; Silva, L.F.; Oliveira, J.G.L.; Teago, G.B.S. 2016. Effect of extractive contents on natural resistance of five different woods to xilophagaus termites attack. Ciencia Florestal 26(4): 1259-1269. https://doi.org/10.5902/1980509825137 DOI: https://doi.org/10.5902/1980509825137

Palanti, S.; Feci, E.; Anichini, M. 2015. Comparison between four tropical wood species for their resistance to marine borers (Teredo spp. and Limnoria spp.) in the Strait of Messina. International Biodeterioration & Biodegradation 104: 472-476. https://doi.org/10.1016/j.ibiod.2015.07.013 DOI: https://doi.org/10.1016/j.ibiod.2015.07.013

Reis, A.R.S.; Reis, L.P.; Alves Júnior, M.; Carvalho, J.C.; Silva, J.R. 2017. Natural resistance of four Amazon woods submitted to xylophagous fungal infection under laboratory conditions. Madera y Bosques 23(2): 155-162. https://doi.org/10.21829/myb.2017.232968 DOI: https://doi.org/10.21829/myb.2017.232968

Ribeiro, M.X.; Bufalino, L.; Mendes, L.M.; Sá, V.A.; Santos, A.; Tonoli, G.H.D. 2014. Resistance of pine, Australian red cedar woods, and their derivate products to Cryptotermes brevis attack. Cerne 20(3): 433-439. https://doi.org/10.1590/01047760201420031277 DOI: https://doi.org/10.1590/01047760201420031277

Romano, A.D.; Acda, M.N. 2017. Feeding preference of the drywood termite Cryptotermes cynocephalus (Kalotermitidae) against industrial tree plantation species in the Philippines. Journal of Asia-Pacific Entomology 20(4): 116-1164. https://doi.org/10.1016/j.aspen.2017.08.026 DOI: https://doi.org/10.1016/j.aspen.2017.08.026

Santana, A.L.B.D.; Maranhão, C.A.; Santos, J.C.; Cunha, F.M.; Conceição, G.M.; Bieber, L.W.; Nascimento, M.S. 2010. Antitermitic activity of extractives from three Brazilian hardwoods against Nasutitermes corniger. International Biodeterioration & Biodegradation 64(1): 7-12. https://doi.org/10.1016/j.ibiod.2009.07.009 DOI: https://doi.org/10.1016/j.ibiod.2009.07.009

Scheffrahn, R.H.; Krecek, J.; Szalanski, A.L.; Austin, J.W. 2005. Synonymy of Neotropical Arboreal Termites Nasutitermes corniger and N. costalis (Isoptera: Termitidae: Nasutitermitinae), with evidence from morphology, genetics, and biogeography. Annals of the Entomological Society of America 98(3): 273-281. https://academic.oup.com/aesa/article/98/3/273/85507 DOI: https://doi.org/10.1603/0013-8746(2005)098[0273:SONATN]2.0.CO;2

Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29(10): 786-794. https://doi.org/10.1177/004051755902901003 DOI: https://doi.org/10.1177/004051755902901003

SEMAS. 2007. Lei Ordinária Nº 6958, de 3 de abril de 2007, doe Nº 30903, 12/04/2007. Governo do Estado do Pará, Belém, Brazil. https://www.semas.pa.gov.br/legislacao/files/pdf/435.pdf

SEMAS. 2015. Instrução normativa Nº 07, de 05 outubro de 2015, doe Nº 32.987, de 07/10/2015. Governo do Estado do Pará, Belém, Brazil. https://www.semas.pa.gov.br/legislacao/files/pdf/435.pdf

Stallbaun, P.H.; Barauna, E.E.P.; Paes, J.B.; Ribeiro, N.C.; Monteiro, T.C.; Arantes, M.D.C. 2017. Natural resistance of Sclerolobium paniculatum Vogel wood to termites in laboratory conditions. Floresta e Ambiente 24: e20160013. https://doi.org/10.1590/2179-8087.001316 DOI: https://doi.org/10.1590/2179-8087.001316

Tarmadi, D.; Tobimatsu, Y.; Yamamura, M.; Miyamoto, T.; Miyagawa, Y.; Umezawa, T.; Yoshimura, T. 2018. NMR studies on lignocellulose deconstructions in the digestive system of the lower termite Coptotermes formosanus Shiraki. Scientific Reports 8: e1290. https://doi.org/10.1038/s41598-018-19562-0 DOI: https://doi.org/10.1038/s41598-018-19562-0

Thaler, N.; Žlahtič, M.; Humar, M. 2014. Performance of recent and old sweet chestnut (Castanea sativa) wood. International Biodeterioration & Biodegradation 94: 141-145. https://doi.org/10.1016/j.ibiod.2014.06.016 DOI: https://doi.org/10.1016/j.ibiod.2014.06.016

Tofanica, B.M.; Cappelletto, E.; Gavrilescu, D.; Mueller, K. 2011. Properties of rapeseed (Brassica napus) stalks fibers. Journal of Natural Fibers 8(4): 241-262. https://doi.org/10.1080/15440478.2011.626189 DOI: https://doi.org/10.1080/15440478.2011.626189

Vasconcellos, A.; Moura, S. 2010. Wood litter consumption by three species of Nasutitermes termites in an area of the Atlantic Coastal Forest in northeastern Brazil. Journal of Insect Science 10(1): e72. https://doi.org/10.1673/031.010.7201 DOI: https://doi.org/10.1673/031.010.7201

Zhao, X.; Guo, P.; Zhang, Z.; Peng, H. 2019. Anatomical features of branchwood and stemwood of Betula costata Trautv. from natural secondary forests in China. BioResources 14(1): 1980-1991. http://dx.doi.org/10.15376/biores.14.1.1980-1991 DOI: https://doi.org/10.15376/biores.14.1.1980-1991

Zhao, X.; Zhang, L.; Liu, D. 2012. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining 6(4): 465-482. https://doi.org/10.1002/bbb.1331 DOI: https://doi.org/10.1002/bbb.1331

Downloads

Published

2024-09-12

How to Cite

de Sousa Silva, A. K. ., Castro Brasil Duarte, M., Do Vale Gonçalves, I., Marcolino de Souza, T., Tomazello, M., Livian Lima de Abreu, J., Gomes da Silva, M., Mendes, L., Ferreira de Oliveira Neto, C., Bufalino, L., de Paula Protásio , . T., & Costa Ferreira, G. (2024). The wide variation of amazonian stocked hardwoods affecting natural resistance to arboreal termites over time. Maderas. Ciencia Y Tecnología, 26. https://doi.org/10.22320/s0718221x/2024.48

Issue

Section

Article

Most read articles by the same author(s)