Effect of heat treatments on the strength and stiffness of poplar
DOI:
https://doi.org/10.22320/s0718221x/2025.29Keywords:
Bending strength, non-destructive testing, thermal modification, modulus of elasticity, Populus canadensis, ultrasoundAbstract
The influence of environmental conditions on wood material properties is known. Temperature is one of them and its effect on poplar wood has been examined in a limited way which this study tried to figure out this issue in a limited context. The influence of heat treatment (110 °C, 160 °C, and 210 °C for 3 h and 6 h) on the density, ultrasonic wave velocity, modulus of rupture, and modulus of elasticity of poplar wood was evaluated. A 2,25 MHz longitudinal ultrasonic wave was used to determine both the ultrasonic wave velocity and the dynamic modulus of elasticity. A three-point bending test was conducted to determine the static modulus of elasticity and the modulus of rupture. The average values for the control samples were 350 kg/m³ for density, 3 598 m/s for ultrasonic wave velocity, 4 552 MPa for dynamic modulus of elasticity, 5 864 MPa for static modulus of elasticity, and 64,1 MPa for modulus of rupture. When samples were treated at 210 °C for 6 h, these properties decreased by 14,3 %, 3 %, 18,7 %, 25 %, and 50,2 %, respectively. In general, the dynamic modulus of elasticity values were lower than the static ones across all treatment conditions. The greatest difference between dynamic and static modulus (34 %) was observed at 110 °C for 6 h, while the smallest difference (18,8 %) occurred at 210 °C for 6 h. Improvements of up to 8,9 %, 2,4 %, and 0,85 % were observed in the modulus of rupture, static modulus of elasticity, and ultrasonic wave velocity, respectively, at 110 °C treatments.
Downloads
References
Atar, İ.; Mengenoğlu, F. 2022. The effect of ply combination on mechanical and physical properties in laminated veneer lumber (LVL) manufactured from alder and poplar. Turkish Journal of Forest Science 6(2): 412–426. https://doi.org/10.32328/turkjforsci.1114074 DOI: https://doi.org/10.32328/turkjforsci.1114074
Aydın, T.Y. 2022. Temperature influenced anisotropic elastic parameters of red pine. Russian Journal of Nondestructive Testing 58(7): 548–562. https://doi.org/10.1134/S1061830922070099 DOI: https://doi.org/10.1134/S1061830922070099
Aydın, M.; Yılmaz Aydın, T. 2024. Non-destructive evaluation of thermal treatment influence on elastic engineering parameters of poplar. Drvna industrija 75(4): 405–418. https://doi.org/10.5552/drvind.2024.0180 DOI: https://doi.org/10.5552/drvind.2024.0180
Bak, M.; Nemeth, R. 2012a. Modification of wood by oil heat treatment. In: Proceedings of the International Scientific Conference on Sustainable Development and Ecological Footprint. Soproni Egyetem Kiadó: Sopron, Hungary, 26-27 March 2012, pp. 1–5.
Bak, M.; Nemeth, R. 2012b. Changes in swelling properties and moisture uptake rate of oil-heat-treated poplar (Populus × euramericana cv. Pannónia) wood. BioResources 7(4): 5128–5137. https://doi.org/10.15376/biores.7.4.5128-5137 DOI: https://doi.org/10.15376/biores.7.4.5128-5137
Bytner, O.; Drożdżek, M.; Laskowska, A.; Zawadzki, J. 2022a. Temperature, time, and interactions between them in relation to colour parameters of black poplar (Populus nigra L.) thermally modified in nitrogen atmosphere. Materials 15(3). e824. https://doi.org/10.3390/ma15030824 DOI: https://doi.org/10.3390/ma15030824
Bytner, O.; Drożdżek, M.; Laskowska, A.; Zawadzki, J. 2022b. Influence of thermal modification in nitrogen atmosphere on the selected mechanical properties of black poplar wood (Populus nigra L.). Materials 15(22). e7949. https://doi.org/10.3390/ma15227949 DOI: https://doi.org/10.3390/ma15227949
Casado, M.; Acuña, L.; Vecilla, D.; Relea, E.; Basterra, A.; Ramón, G.; López, G. 2010. The influence of size in predicting the elastic modulus of Populus × euramericana timber using vibration techniques. In: Paulo, J.S.Z. (Ed.). Structures and Architecture. CRC Press: London, pp. 2025-2032. ISBN: 978-041549249-2 https://maderas.uva.es/files/2019/03/2010-Casado-et-al-The-influence-of-size-MOE-Populus-PLG.pdf
Chang, F.K. 1986. Stress analysis of wooden structures exposed to elevated temperatures. Journal of Reinforced Plastics and Composites 5(4): 218–238. https://doi.org/10.1177/073168448600500401 DOI: https://doi.org/10.1177/073168448600500401
Danilović, M.; Sarić, R.; Cirović, V.; Pudja, V. 2022. The impact of pruning on tree development in poplar Populus × canadensis “I-214” plantations. iForest - Biogeosciences and Forestry 15(1): 33–37. https://doi.org/10.3832/ifor3865-014 DOI: https://doi.org/10.3832/ifor3865-014
Demirkir, C.; Aydin, I.; Colak, S.; Ozturk, H. 2017. Effects of plasma surface treatment on bending strength and modulus of elasticity of beech and poplar plywood. Maderas. Ciencia y tecnología 19(2): 195–202. https://doi.org/10.4067/S0718-221X2017005000017 DOI: https://doi.org/10.4067/S0718-221X2017005000017
Düzkale Sözbir, G.; Bektaş, I.; Ak, A.K. 2019. Influence of combined heat treatment and densification on mechanical properties of poplar wood. Maderas. Ciencia y tecnología 21(4): 481–492. https://doi.org/10.4067/S0718-221X2019005000405 DOI: https://doi.org/10.4067/S0718-221X2019005000405
European Committee for Standardization. 2016. Structural timber – Strength classes. EN 338. CEN: Brussels, Belgium.
Ettelaei, A.; Layeghi, M.; Zarea Hosseinabadi, H.; Ebrahimi, G. 2019. Prediction of modulus of elasticity of poplar wood using ultrasonic technique by applying empirical correction factors. Measurement 135: 392–399. https://doi.org/10.1016/j.measurement.2018.11.076 DOI: https://doi.org/10.1016/j.measurement.2018.11.076
Faruk, O.; Ain, M.S. 2013. Biofiber reinforced polymer composites for structural applications. In: Uddin, N. (Ed.). Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering. Woodhead Publishing: Cambridge, UK, pp. 18–53. https://doi.org/10.1533/9780857098955.1.18. ISBN: 978-0857092342 DOI: https://doi.org/10.1533/9780857098955.1.18
Gallego, A.; Ripoll, M.A.; Timbolmas, C.; Rescalvo, F.; Suarez, E.; Valverde, I.; Rodríguez, M.; Navarro, F.B.; Merlo, E. 2021. Modulus of elasticity of I-214 young poplar wood from standing trees to sawn timber: influence of the age and stand density. European Journal of Wood and Wood Products 79(5): 1225–1239. https://doi.org/10.1007/s00107-021-01675-5 DOI: https://doi.org/10.1007/s00107-021-01675-5
Gao, Y.; Zhao, L.; Jiang, J.; Li, Z.; Lyu, J. 2021. Water absorption properties in transverse direction of heat-treated Chinese fir wood determined using TD-NMR. Forests 12(11). e1545. https://doi.org/10.3390/f12111545 DOI: https://doi.org/10.3390/f12111545
Giovannelli, A.; Deslauriers, A.; Fragnelli, G.; Scaletti, L.; Castro, G.; Rossi, S.; Crivellaro, A. 2007. Evaluation of drought response of two poplar clones (Populus × canadensis Mönch ‘I-214’ and P. deltoides Marsh. ‘Dvina’) through high resolution analysis of stem growth. Journal of Experimental Botany 58(10): 2673–2683. https://doi.org/10.1093/jxb/erm117 DOI: https://doi.org/10.1093/jxb/erm117
Goli, G.; Cremonini, C.; Negro, F.; Zanuttini, R.; Fioravanti, M. 2014. Physical-mechanical properties and bonding quality of heat treated poplar (I-214 clone) and ceiba plywood. iForest - Biogeosciences and Forestry 8(5): 687–692. https://doi.org/10.3832/ifor1276-007 DOI: https://doi.org/10.3832/ifor1276-007
Hassani, S.; Talaeipour, M.; Bazyar, B.; Hemmasi, A.H.; Mahdavi, S. 2022. The effects of tree age, thickness, and depth of timber on density and mechanical properties of heat-treated black poplar wood (Populus nigra). BioResources 17(3): 4086–4097. https://doi.org/10.15376/biores.17.3.4086-4097 DOI: https://doi.org/10.15376/biores.17.3.4086-4097
Hill, C.; Altgen, M.; Rautkari, L. 2021. Thermal modification of wood – A review: chemical changes and hygroscopicity. Journal of Materials Science 56(11): 6581–6614. https://doi.org/10.1007/s10853-020-05722-z DOI: https://doi.org/10.1007/s10853-020-05722-z
Hodoušek, M.; Dias, A.M.P.G.; Martins, C.; Marques, A.; Böhm, M. 2017. Comparison of non-destructive methods based on natural frequency for determining the modulus of elasticity of Cupressus lusitanica and Populus × canadensis. BioResources 12(1): 270–282. https://doi.org/10.15376/biores.12.1.270-282 DOI: https://doi.org/10.15376/biores.12.1.270-282
Jia, R.; Wang, Y.; Wang, R.; Chen, X. 2021. Physical and mechanical properties of poplar clones and rapid prediction of the properties by near infrared spectroscopy. Forests 12(2). e206. https://doi.org/10.3390/f12020206 DOI: https://doi.org/10.3390/f12020206
Kamperidou, V. 2019. The biological durability of thermally- and chemically-modified black pine and poplar wood against basidiomycetes and mold action. Forests 10(12). e1111. https://doi.org/10.3390/f10121111 DOI: https://doi.org/10.3390/f10121111
Kamperidou, V.; Barboutis, I. 2018. Changes in hygroscopic properties of poplar and black pine induced by thermal treatment. ProLigno 14(4): 57–64. http://www.proligno.ro/ro/articles/2018/4/KAMPERIDOU.pdf
Kamperidou, V.; Barboutis, I. 2021. Natural weathering performance of thermally treated poplar and black pine wood. Maderas. Ciencia y tecnología 23(24): 1–12. https://doi.org/10.4067/S0718-221X2021000100424 DOI: https://doi.org/10.4067/S0718-221X2021000100424
Kamperidou, V.; Barboutis, I.; Vasileiou, V. 2013. Hygroscopicity of thermally modified poplar (Populus spp.) wood. ProLigno 9(4): 664–669. https://www.proligno.ro/en/articles/2013/4/Kamperidou_final.pdf
Kánnár, A.; Csiha, C. 2021. Comparative analysis of static and dynamic MOE of Pannónia poplar timber from different plantations. Wood Research 66(2): 195–202. https://doi.org/10.37763/wr.1336-4561/66.2.195202 DOI: https://doi.org/10.37763/wr.1336-4561/66.2.195202
Karagöz, Ü.; Akyıldız, M.H.; İşleyen, O. 2011. Effect of heat treatment on surface roughness of thermal wood machined by CNC. ProLigno 7(4): 50–58. https://www.cabidigitallibrary.org/doi/full/10.5555/20123022101
Koman, S.; Feher, S.; Abraham, J.; Taschner, R. 2013. Effect of knots on the bending strength and the modulus of elasticity of wood. Wood Research 58(4): 617–626. https://www.woodresearch.sk/wr/201304/11.pdf
Kretschmann, D.E. 2010. Chapter 5. Mechanical properties of wood. In: Ross, R.J. (Ed.). Wood handbook – Wood as an engineering material. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, USA. https://www.fpl.fs.usda.gov/documnts/fplgtr/fpl_gtr190.pdf
Kurt, R. 2010. Suitability of three hybrid poplar clones for laminated veneer lumber manufacturing using melamine urea formaldehyde adhesive. BioResources 5(3): 1868–1878. https://doi.org/10.15376/biores.5.3.1868-1878 DOI: https://doi.org/10.15376/biores.5.3.1868-1878
Meija, A.; Irbe, I.; Morozovs, A.; Spulle, U. 2020. Properties of Populus genus veneers thermally modified by two modification methods: wood treatment technology and vacuum thermal treatment. Agronomy Research 18(3): 2138–2147. https://doi.org/10.15159/AR.20.184
Papandrea, S.F.; Cataldo, M.F.; Bernardi, B.; Zimbalatti, G.; Proto, A.R. 2022. The predictive accuracy of modulus of elasticity (MOE) in the wood of standing trees and logs. Forests 13(8). e1273. https://doi.org/10.3390/f13081273 DOI: https://doi.org/10.3390/f13081273
Pásztory, Z.; Horváth, N.; Börcsök, Z. 2017. Effect of heat treatment duration on the thermal conductivity of spruce and poplar wood. European Journal of Wood and Wood Products 75(5): 843–845. https://doi.org/10.1007/s00107-017-1170-2 DOI: https://doi.org/10.1007/s00107-017-1170-2
Pelit, H.; Yorulmaz, R. 2024. Influence of thermal pretreatments on dimensional change and humidity sensitivity of densified spruce and poplar wood. Maderas. Ciencia y tecnología 26(9). e09. https://doi.org/10.22320/s0718221x/2024.09 DOI: https://doi.org/10.22320/s0718221x/2024.09
Perçin, O.; Yeşil, H.; Uzun, O.; Bülbül, R. 2024. Physical, mechanical, and thermal properties of heat-treated poplar and beech wood. BioResources 19(4): 7339–7353. https://doi.org/10.15376/biores.19.4.7339-7353 DOI: https://doi.org/10.15376/biores.19.4.7339-7353
Taraborelli, C.; Monteoliva, S.; Keil, G.; Spavento, E. 2022. Effect of heat treatment on hardness, density and color of Populus × canadensis ‘I-214’ wood. Forest Systems 31(3). e023. https://doi.org/10.5424/fs/2022313-19558 DOI: https://doi.org/10.5424/fs/2022313-19558
Todaro, L.; Liuzzi, S.; Pantaleo, A.; Lo Giudice, V.; Moretti, N.; Stefanizzi, P. 2021. Thermo-modified native black poplar (Populus nigra L.) wood as an insulation material. iForest - Biogeosciences and Forestry 14(3): 268–273. https://doi.org/10.3832/ifor3710-014 DOI: https://doi.org/10.3832/ifor3710-014
Villasante, A.; Vignote, S.; Fernandez-Serrano, A.; Laina, R. 2022. Simultaneous treatment with oil heat and densification on physical properties of Populus × canadensis wood. Maderas. Ciencia y tecnología 24(5): 1–12. https://doi.org/10.4067/S0718-221X2022000100405 DOI: https://doi.org/10.4067/S0718-221X2022000100405
Wang, J.; Fishwild, S.J.; Begel, M.; Zhu, J.Y. 2020. Properties of densified poplar wood through partial delignification with alkali and acid pretreatment. Journal of Materials Science 55(29): 14664–14676. https://doi.org/10.1007/s10853-020-05034-2 DOI: https://doi.org/10.1007/s10853-020-05034-2
YingJie, Z.; Dejun, F.; Yanguang, D. 2017. Wood physical and mechanical properties of Populus × canadensis Moench and Populus × euramericana (Dode) Guinier cv. Gelrica. Agricultural Science & Technology – Hunan 18(12): 2532–2535. https://www.cabidigitallibrary.org/doi/full/10.5555/20183072096
Yılmaz Aydın, T. 2021. Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry 22(4): 432–438. https://doi.org/10.18182/tjf.1019032 DOI: https://doi.org/10.18182/tjf.1019032
Yılmaz Aydın, T.; Aydın, M. 2020. Influence of temperature and exposure duration on the bending properties of oak wood. Journal of Bartin Faculty of Forestry 22(3): 871–877. https://doi.org/10.24011/barofd.792268 DOI: https://doi.org/10.24011/barofd.792268
Zamani, S.M.; Hajihassani, R.; Ghahri, S. 2023. Bio-durability and engineering characteristics of heat-treated poplar wood. Drvna industrija 74(4): 469–477. https://doi.org/10.5552/drvind.2023.0041 DOI: https://doi.org/10.5552/drvind.2023.0041
Zheng, S.; Chen, M.; Wu, J.; Xu, J. 2023. Effect of heat treatment on properties and interfacial compatibility of poplar veneer/polyethylene film composite plywood. Polymer Testing 122. e108006. https://doi.org/10.1016/j.polymertesting.2023.108006 DOI: https://doi.org/10.1016/j.polymertesting.2023.108006
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.