Influence of vermiculite addition on particleboard properties with varied urea formaldehyde adhesive ratios

Authors

  • Abdullah Istek Bartin University. Faculty of Forestry. Department of Forest Industry Engineering. Bartın, Türkiye.
  • İsmail Özlüsoylu Bartin University. Faculty of Forestry. Department of Forest Industry Engineering. Bartın, Türkiye. https://orcid.org/0000-0002-0391-4794
  • Saadettin Murat Onat Bartin University. Faculty of Forestry. Department of Forest Industry Engineering. Bartın, Türkiye. https://orcid.org/0000-0003-1749-0619
  • Mehmet Emin Ergün Alanya Alaaddin Keykubat University. Akseki Vocational School. Department of Forestry. Antalya, Türkiye. https://orcid.org/0000-0002-9938-7561

DOI:

https://doi.org/10.22320/s0718221x/2025.45

Keywords:

Mechanical properties, particleboard, physical properties, thermal properties, vermiculite, urea-formaldehyde resins

Abstract

Wood and wood-based panels are widely used in the construction and furniture industries; however, their inherently low fire resistance remains a major limitation. Vermiculite, a mineral that expands significantly at high temperatures, offers a promising solution to improve the fire resistance of such materials. This study aims to determine how varying vermiculite contents (0 %, 15 %, 20 %, 25 %) and urea–formaldehyde (UF) adhesive levels (12 %, 14 %, 16 %) jointly influence the physical, mechanical, and thermal performance of particleboards. Single-layer panels were manufactured under controlled pressing conditions, and their dimensional stability, strength properties, and thermal behavior were evaluated. Increasing vermiculite content led to higher thickness swelling and water absorption; for instance, at 25 % vermiculite, 2 h TS rose to 45.7 % in the 12 % UF group, while increasing UF to 16 % reduced this value to 31.4 %. Mechanical performance decreased with vermiculite addition: MOR declined from 15.77 MPa (control) to values below P1 requirements at higher vermiculite ratios, although increased UF partially mitigated this loss. In contrast, thermal properties improved markedly; mass loss during TGA decreased from 91.34 % (control) to 72.55 % at 25 % vermiculite with 16 % UF, indicating enhanced resistance to thermal degradation. These findings demonstrate that vermiculite substantially enhances thermal stability but compromises mechanical integrity, underscoring the need for careful balance between mineral content and adhesive level. Optimized vermiculite–UF combinations can support the development of particleboards for fire-resistant interior applications, offering valuable guidance for future material design and industrial implementation.

Downloads

Download data is not yet available.

Author Biographies

Abdullah Istek, Bartin University. Faculty of Forestry. Department of Forest Industry Engineering. Bartın, Türkiye.

Biography

İsmail Özlüsoylu, Bartin University. Faculty of Forestry. Department of Forest Industry Engineering. Bartın, Türkiye.

Biography

Saadettin Murat Onat, Bartin University. Faculty of Forestry. Department of Forest Industry Engineering. Bartın, Türkiye.

Biography

Mehmet Emin Ergün, Alanya Alaaddin Keykubat University. Akseki Vocational School. Department of Forestry. Antalya, Türkiye.

Biography

References

Akinyemi, B.A.; Okonkwo, C.E.; Alhassan, E.A.; Ajiboye, M. 2019. Durability and strength properties of particle boards from polystyrene-wood wastes. Journal of Materials Cycles and Waste Management 21(6): 1541-1549. https://doi.org/10.1007/s10163-019-00905-6 DOI: https://doi.org/10.1007/s10163-019-00905-6

Aksogan, O.; Resatoglu, R.; Binici, H. 2018. An environment friendly new insulation material involving waste newsprint papers reinforced by cane stalks. Journal of Building Engineering 15: 33-40. https://doi.org/10.1016/j.jobe.2017.10.011 DOI: https://doi.org/10.1016/j.jobe.2017.10.011

Altay, Ç.; Özdemir, E.; Baysal, E.; Ergün, M.E.; Toker, H. 2024. Physical, mechanical, and thermal characteristics of alkaline copper quaternary impregnated Oriental beech wood. Maderas. Ciencia y Tecnología 26(3): 1-10. https://doi.org/10.22320/s0718221x/2024.03 DOI: https://doi.org/10.22320/s0718221x/2024.03

Ashori, A. 2010. Hybrid composites from waste materials. Journal of Polymers and the Environment 18(1): 65-70. https://doi.org/10.1007/s10924-009-0155-6 DOI: https://doi.org/10.1007/s10924-009-0155-6

American Society for Testing and Materials. 2020. Standard test methods for evaluating properties of wood-base fiber and particle panel materials. ASTM D1037-12. ASTM: West Conshohocken, PA, USA. www.astm.org/Standards/D1037.htm

American Society for Testing and Materials. 2021. Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM C518-21. ASTM: West Conshohocken, PA, USA. https://www.astm.org/c0518-21.html

Aydın, D.Y.; Gürü, M.; Ayar, B.; Çakanyıldırım, Ç. 2016. Bor bileşiklerinin alev geciktirici ve yüksek sıcaklığa dayanıklı pigment olarak uygulanabilirliği. Journal of Boron 1(1): 33-39. https://dergipark.org.tr/tr/download/article-file/173986

Bi̇ni̇ci̇, H. 2016. Atık mukavva, alçı, pomza, perlit, vermikülit ve zeolit ile yapılan kompozitlerin yangın direncinin araştırılması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31(1): 1-10. https://doi.org/10.21605/cukurovaummfd.317714 DOI: https://doi.org/10.21605/cukurovaummfd.317714

Bi̇ni̇ci̇, H.; Sevi̇nç, A.H.; Eken, M.; Efe, V. 2016. Atık gazete kağıdından yalıtım malzemesi üretimi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 30(2): 13-24. https://doi.org/10.21605/cukurovaummfd.242772 DOI: https://doi.org/10.21605/cukurovaummfd.242772

Braganza, L.F.; Crawford, R.J.; Smalley, M.V.; Thomas, R.K. 1990. Swelling of n-butylammonium vermiculite in water. Clays and Clay Minerals 38(1): 90-96. https://doi.org/10.1346/CCMN.1990.0380112 DOI: https://doi.org/10.1346/CCMN.1990.0380112

Çavdar, A.D. 2020. Effect of zeolite as filler in medium density fiberboards bonded with urea formaldehyde and melamine formaldehyde resins. Journal of Building Engineering 27. e101000. https://doi.org/10.1016/j.jobe.2019.101000 DOI: https://doi.org/10.1016/j.jobe.2019.101000

Diler, H.; Durmaz, S.; Acar, M.; Aras, U.; Erdil, Y.Z. 2024. The effect of vermiculite on flame retardancy, physical and mechanical properties of wood plastic composites. BioResources 19(1): 183-194. https://doi.org/10.15376/biores.19.1.183-194 DOI: https://doi.org/10.15376/biores.19.1.183-194

Dix, B.; Roffael, E. 1997. Einfluß der verkernung und des baumalters auf die eigenschaften von spanplatten aus kiefernholz (Pinus sylvestris). Holz Roh- Werkst 55(2): 103-109. https://doi.org/10.1007/BF02990526 DOI: https://doi.org/10.1007/BF02990526

Durmaz, S. 2022. Effect of wood flour content on the properties of flat-pressed wood plastic composites. Wood Research 67(2): 302-310. https://doi.org/10.37763/wr.1336-4561/67.2.302310 DOI: https://doi.org/10.37763/wr.1336-4561/67.2.302310

Ergun, M.E. 2023. Activated carbon and cellulose-reinforced biodegradable chitosan foams. BioResources 18(1): 1215-1231. https://doi.org/10.15376/biores.18.1.1215-1231 DOI: https://doi.org/10.15376/biores.18.1.1215-1231

Ergun, M.E.; Ozen, E.; Yildirim, N.; Dalkilic, B.; Baysal, E. 2023. Mechanical and thermal properties of polyvinyl acetate foams reinforced with biopolymers. Cellulose Polymers 42(3-4): 156-173. https://doi.org/10.1177/02624893231193501 DOI: https://doi.org/10.1177/02624893231193501

Evangelopoulos, P.; Kantarelis, E.; Yang, W. 2015. Investigation of the thermal decomposition of printed circuit boards (PCBs) via thermogravimetric analysis (TGA) and analytical pyrolysis (Py-GC/MS). Journal of Analytical and Applied Pyrolysis 115: 337-343. https://doi.org/10.1016/j.jaap.2015.08.012 DOI: https://doi.org/10.1016/j.jaap.2015.08.012

Ghofrani, M.; Ashori, A.; Mehrabi, R. 2017. Mechanical and acoustical properties of particleboards made with date palm branches and vermiculite. Polymer Testing 60: 153-159. https://doi.org/10.1016/j.polymertesting.2017.03.028 DOI: https://doi.org/10.1016/j.polymertesting.2017.03.028

Hashim, R.; Sulaiman, O.; Kumar, R.N.; Tamyez, P.F.; Murphy, R.J.; Ali, Z. 2009. Physical and mechanical properties of flame retardant urea formaldehyde medium density fiberboard. Journal of Materials Processing Technology 209(2): 635-640. https://doi.org/10.1016/j.jmatprotec.2008.02.036 DOI: https://doi.org/10.1016/j.jmatprotec.2008.02.036

He, X.; Li, X.; Zhong, Z.; Yan, Y.; Mou, Q.; Yao, C.; Wang, C. 2014. The fabrication and properties characterization of wood-based flame retardant composites. Journal of Nanomaterials 2014. e878357. https://doi.org/10.1155/2014/878357 DOI: https://doi.org/10.1155/2014/878357

İstek, A.; Yiğittap, Ö.; Özlüsoylu, İ. 2023. Effect of chip temperature during bonding on particleboard properties. Maderas. Ciencia y Tecnología 25(17): 1-8. https://doi.org/10.4067/s0718-221x2023000100417 DOI: https://doi.org/10.4067/S0718-221X2023000100417

İstek, A.; Sıradag, H. 2013. The effect of density on particleboard properties. In: Proceedings of the International Caucasian Forestry Symposium, 23-26 October, Artvin, Turkey, pp. 932-938. https://www.semanticscholar.org/paper/THE-EFFECT-OF-DENSITY-ON-PARTICLEBOARD-PROPERTIES-Istek-Sirada%C4%9F/271d53a520ee7f5f39d33fe9bf78be1bfc884be7

Jiang, J.; Li, J.; Hu, J.; Fan, D. 2010. Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Construction and Building Materials 24(12): 2633-2637. https://doi.org/10.1016/j.conbuildmat.2010.04.064 DOI: https://doi.org/10.1016/j.conbuildmat.2010.04.064

Koksal, F.; Gencel, O.; Kaya, M. 2015. Combined effect of silica fume and expanded vermiculite on properties of lightweight mortars at ambient and elevated temperatures. Construction and Building Materials 88: 175-187. https://doi.org/10.1016/j.conbuildmat.2015.04.021 DOI: https://doi.org/10.1016/j.conbuildmat.2015.04.021

Kurt, R. 2022. Control of system parameters by estimating screw withdrawal strength values of particleboards using artificial neural network-based statistical control charts. Journal of Wood Science 68. e64. https://doi.org/10.1186/s10086-022-02065-y DOI: https://doi.org/10.1186/s10086-022-02065-y

Li, L.; Zhou, X.; Li, Y.; Gong, C.; Lu, L.; Fu, X.; Tao, W. 2017. Water absorption and water/fertilizer retention performance of vermiculite modified sulphoaluminate cementitious materials. Construction and Building Materials 137: 224-233. https://doi.org/10.1016/j.conbuildmat.2017.01.061 DOI: https://doi.org/10.1016/j.conbuildmat.2017.01.061

Li, X.; Lei, B.; Lin, Z.; Huang, L.; Tan, S.; Cai, X. 2013. The utilization of organic vermiculite to reinforce wood-plastic composites with higher flexural and tensile properties. Industrial Crops and Products 51: 310-316. https://doi.org/10.1016/j.indcrop.2013.09.019 DOI: https://doi.org/10.1016/j.indcrop.2013.09.019

Mensah, R.A.; Jiang, L.; Renner, J.S.; Xu, Q. 2023. Characterisation of the fire behaviour of wood: From pyrolysis to fire retardant mechanisms. Journal of Thermal Analysis and Calorimetry 148(4): 1407-1422. https://doi.org/10.1007/s10973-022-11442-0 DOI: https://doi.org/10.1007/s10973-022-11442-0

Islam, M.N.; Adib, A.; Dana, N.H.; Das, A.K.; Faruk, M.O.; Siddique, M.R.H.; Agar, D.A.; Larsson, S.H.; Rudolfsson, M.; Ashaduzzaman, Md.; Iftekhar, M.S. 2021. Raw natural rubber latex-based bio-adhesive for the production of particleboard: formulation and optimization of process parameters. RSC Advances 11(46): 28542-28549. https://doi.org/10.1039/D1RA05307H DOI: https://doi.org/10.1039/D1RA05307H

Ndiaye, D.; Matuana, L.M.; Morlat-Therias, S.; Vidal, L.; Tidjani, A.; Gardette, J.L. 2011. Thermal and mechanical properties of polypropylene/wood-flour composites. Journal of Applied Polymer Science 119(6): 3321-3328. https://doi.org/10.1002/app.32985 DOI: https://doi.org/10.1002/app.32985

Nguyen, A.N.; Reinert, L.; Lévêque, J.M.; Beziat, A.; Dehaudt, P.; Juliaa, J.F.; Duclaux, L. 2013. Preparation and characterization of micron and submicron-sized vermiculite powders by ultrasonic irradiation. Applied Clay Science 72: 9-17. https://doi.org/10.1016/j.clay.2012.12.007 DOI: https://doi.org/10.1016/j.clay.2012.12.007

Ozkaya, K.; Cemil Ilce, A.; Burdurlu, E.; Aslan, S. 2007. The effect of potassium carbonate, borax and wolmanit on the burning characteristics of oriented strandboard (OSB). Construction and Building Materials 21(7): 1457-1462. https://doi.org/10.1016/j.conbuildmat.2006.07.001 DOI: https://doi.org/10.1016/j.conbuildmat.2006.07.001

Ozyhar, T. 2020. Application of mineral filler in surface layer of three-layer particle board and its effect on material properties as a function of filler content. International Wood Products Journal 11(3): 109-114. https://doi.org/10.1080/20426445.2020.1735753 DOI: https://doi.org/10.1080/20426445.2020.1735753

Özlüsoylu, İ.; İstek, A. 2015. Mobilya üretiminde kullanılan panellerden salınan formaldehit emisyonu ve insan sağlığı üzerine etkileri. Selcuk University Journal of Engineering Sciences 14(2): 213-227. https://sujes.selcuk.edu.tr/sujes/article/view/228/178

Procházka, P.; Honig, V.; Bouček, J.; Hájková, K.; Trakal, L.; Soukupová, J.; Roubík, H. 2021. Availability and applicability of wood and crop residues for the production of wood composites. Forests 12(5). e641. https://doi.org/10.3390/f12050641 DOI: https://doi.org/10.3390/f12050641

Rashad, A.M. 2016. Vermiculite as a construction material - A short guide for Civil Engineer. Construction and Building Materials 125: 53-62. https://doi.org/10.1016/j.conbuildmat.2016.08.019 DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.019

Seo, H.J.; Kim, S.; Huh, W.; Park, K.W.; Lee, D.R.; Son, D.W.; Kim, Y.S. 2016. Enhancing the flame-retardant performance of wood-based materials using carbon-based materials. Journal of Thermal Analysis and Calorimetry 123(3): 1935-1942. https://doi.org/10.1007/s10973-015-4553-9 DOI: https://doi.org/10.1007/s10973-015-4553-9

Sutcu, M. 2015. Influence of expanded vermiculite on physical properties and thermal conductivity of clay bricks. Ceramics International 41(2, Part B): 2819-2827. https://doi.org/10.1016/j.ceramint.2014.10.102 DOI: https://doi.org/10.1016/j.ceramint.2014.10.102

Suvorov, S.A.; Skurikhin, V.V. 2003. Vermiculite - a promising material for high-temperature heat insulators. Refractories and Industrial Ceramics 44(3): 186-193. https://doi.org/10.1023/A:1026312619843 DOI: https://doi.org/10.1023/A:1026312619843

Turkish Standards Institution. 1997. Standard atmospheres for conditioning and/or testing; Specifications. TS 642 ISO 554. TSE: Ankara, Turkey. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?

Turkish Standards Institution. 1999. Wood-Based Panels-Determination of modulus of elasticity in bending and of bending strength. TS EN 310. TSE: Ankara, Turkey. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073081043116097068090054109087073106

Turkish Standards Institution. 2012. Particleboards - Specification. TS EN 312. TSE: Ankara, Turkey. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073086075116114114080065054097119079

Turkish Standards Institution. 1999. Particleboards and fibreboards- Determination of swelling in thickness after immersion in water. TS EN 317. TSE: Ankara, Turkey. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073085120113055076085053105079054080

Turkish Standards Institution. 1999. Particleboards and fibreboards- Determination of tensile strength perpendicular to the plane of the board. TS EN 319. TSE: Ankara, Turkey. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073102114047051073055104118100104110

Turkish Standards Institution. 1999. Wood-based panels- Determination of moisture content. TS EN 322. TSE: Ankara, Turkey. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073086053053069116117111080116115097

Turkish Standards Institution. 1999. Wood-Based panels- Determination of density. TS EN 323. TSE: Ankara, Turkey. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073087100068068087074054118116055115

Turkish Standards Institution. 1999. Wood-Based panels- Sampling, cutting and inspection- Part 1: Sampling test pieces and expression of test results. TS EN 326-1. TSE: Ankara, Turkey. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073090076116057120114090121080106051

Wang, F.; Gao, Z.; Zheng, M.; Sun, J. 2016a. Thermal degradation and fire performance of plywood treated with expanded vermiculite. Fire and Materials 40(3): 427-433. https://doi.org/10.1002/fam.2297 DOI: https://doi.org/10.1002/fam.2297

Wang, J.; Wang, F.; Gao, Z.; Zheng, M.; Sun, J. 2016b. Flame retardant medium-density fiberboard with expanded vermiculite. BioResources 11(3): 6940-6947. https://doi.org/10.15376/biores.11.3.6940-6947 DOI: https://doi.org/10.15376/biores.11.3.6940-6947

Downloads

Published

2025-12-03

How to Cite

Istek, A. ., Özlüsoylu, İsmail ., Onat, S. M. ., & Ergün, M. E. . (2025). Influence of vermiculite addition on particleboard properties with varied urea formaldehyde adhesive ratios. Maderas. Ciencia Y Tecnología, 27, e4525. https://doi.org/10.22320/s0718221x/2025.45

Issue

Section

Article