Physical, mechanical, and thermal characteristics of alkaline copper quaternary impregnated oriental beech wood


  • Çağlar Altay
  • Emir Özdemir
  • Ergün Baysal
  • Mehmet Emin Ergün
  • Hilmi Toker


Impregnation, Korasit KS, mechanical properties, Oriental beech, physical properties, thermal properties


The physical, mechanical, and thermal properties of Oriental beech (Fagus orientalis), which had been impregnated with the water-based, copper-containing Korasit KS material from the Alkaline Copper Quaternary group, were investigated in this study. According to ASTM 1413-07el (2007) standard, the wood samples used in the investigation were impregnated with 3 % and 6 % aqueous solutions of Korasit KS. The modulus of rupture, thermal, and water absorption tests were performed on samples of Oriental beech after they had been impregnated. Oriental beech's modulus of rupture values decreased as a result of Korasit KS impregnation. Additionally, Oriental beech had lower modulus of rupture values at greater concentrations of Korasit KS. In every water absorption period, the water absorption values of the Oriental beech impregnated with Korasit KS were higher than those of the control group. Our results showed that Korasit KS impregnation enhanced thermal properties of Oriental beech. Moreover, higher concentration levels of Oriental beech yielded better thermal characteristics of Oriental beech.


Download data is not yet available.


Alma, H., 1991. Çeşitli ağaç türlerinde su alınımının ve çalışmanın azaltılması. M.Sc. Thesis, Institute of Science Engineering, Karadeniz Techical University, Trabzon, Turkey. (In Turkish)

Almeida, T.H.; Ferro, F.S.; Aquino, V.B.D.M.; Christoforo, A.L.; Lahr, F.A. 2021. Particleboard produced with chromated copper arsenate-and borate-treated caixeta wood: a technical feasibility study. Eng. Agríc 41(5): 567-575.

American Society for Testing and Materials. 2007. Standard test method for wood preservatives by laboratory soil-block cultures (Withdrawn 2016). ASTMD 1413-07e1, ASTM. West Conshohocken, PA, USA.

Baysal, E.; Deveci, İ.; Türkoğlu, T.; Toker, H. 2017. Thermal analysis of oriental beech sawdust treated with some commercial wood preservatives. Maderas-Cienc Tecnol 19(3): 329-338.

Bianchi, O.; Dal Castel, C.; de Oliveira, R. V.; Bertuoli, P. T.; Hillig, E. 2010. Nonisothermal degradation of wood using thermogravimetric measurements. Polímeros Ciênc Tecnol 20(5): 395-400.

Bucur, V. 2011: Delamination in wood, Wood products and wood-based composites. Springer International Publishing. New York, USA.

Budakçı, M.; Atar, M. 2000. Effects of bleaching process on hardness and glossiness of pine wood (Pinus sylvestris L.) exposed to outdoor conditions. Turk J Agric For 25(4): 201-207.

Can, A.; Sivrikaya, H. 2019. Su itici maddeler ile kombine edilmiş bakırlı ve borlu bileşiklerin yıkanma özellikleri. Turk J For 20(3): 261-266. (In Turkish)

Chen, X.; Yu, J.; Guo, S. 2006. Structure and properties of polypropylene composites filled with magnesium hydroxide. J App Polym Sci 102(5): 4943–4951.

Choi, S.W.; Lee, B.H.; Kim, H.J.; Kim, H.S. 2009. Thermal behavior of flame retardant filled PLA-WF bio-composites. J Korean Wood Sci Technol 37(2): 155-163.

Fu, Q.; Argyropolous, D.; Lucia, L.; Tilotta, D.; Lebow, S. 2009. Chemical yields from low-temperature pyrolysis of CCA-treated wood. Forest Products Laboratory. USA.

Freeman, M.H.; McIntyre, C.R. 2008. Copper-based wood preservatives. Forest Prod J 58(11): 6-27.

Hafızoğlu, H.; Yalınkılıç, M.K.; Yıldız, Ü.C.; Baysal, E.; Peker, H.; Demirci, Z., 1994. Utilization of Turkey’s boron reserves in wood preservation industry. Project of Turkish Science and Tech. Council (TUBITAK), Ankara, Turkey.

Helsen, L.; Van den Bulck, E. 2000. Kinetics of the low-temperature pyrolysis of chromated copper arsenate-treated wood. J Anal Appl Pyrolysis 53(1): 51-79.

Hirata, T.; Inoue, M.; Fukui, Y. 1992. Pyrolysis and combustion toxicity of wood treated with CCA. Wood Sci Technol 27(1): 35-47.

Junges, J.; Perondi, D.; Ferreira, S. D.; Dettmer, A.; Osório, E.; Godinho, M. 2019. Multi-technique characterization of chromated copper arsenate-treated wooden utility poles from the Brazilian electricity network. Eur J Wood Prod 77(2): 279-291.

Kartal, S.N. 2000. The leachability, fungal resistance, and mechanical properties of wood treated with CCA and CCB wood preservatives. J Faculty of Forestry Istanbul University 50 (2): 177-194. (In Turkish)

Kirkpatrick, J.W.; Barnes, H.M. 2006. Copper naphthenate treatments for engineered wood composite panels. Bioresour Technol 97(15): 1959-1963.

Khalil, H.P.S.A.; Bhat, I.H.; Awang, K.B.; Bakare, I.O.; Issam, A.M. 2010. Effect of weathering on physical, mechanical and morphological properties of chemically modified wood materials. Mater Des 31(9): 4363-4368.

Kim, U. J.; Eom, S. H.; Wada, M. 2010. Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95(5): 778-781.

Kong, X.; Liu, S.; Zhao, J. 2008. Flame retardancy effect of surface-modified metal hydroxides on linear low density polyethylene. J Cent South Univ Technol 15(6): 779–785.

Koo, W.M.; Jung, S.H.; Kim, J.S. 2014. Production of bio-oil with low contents of copper and chlorine by fast pyrolysis of alkaline copper quaternary-treated wood in a fluidized bed reactor. Energy 68: 555-561.

Li, S.; Long, B.; Wang, Z.; Tian, Y.; Zheng, Y.; Zhang, Q. 2010. Synthesis of hydrophobic zinc borate nanoflakes and its effect on flame retardant properties of polyethylene. J Solid State Chem 183 (4): 957–962.

Lu, J. Z.; Duan, X.; Wu, Q.; Lian, K., 2008: Chelating efficiency and thermal, mechanical and decay resistance performances of chitosan copper complex in wood–polymer composites. Bioresour Technol 99(13): 5906-5914.

Nicholas, D. D.; Kabir, A.; Williams, A.D.; Preston, A.F., 2000. Water repellency of wood treated with alkylammonium compounds and chromated copper arsenate. In: IRG/WP 00-30231, 31. Annual Meeting, 14-19 May, USA.

Örs, Y.; Keskin, H. 2001. Ağaç malzeme bilgisi. Nobel Academic Publishing. (In Turkish)

Popescu, M.C.; Popescu, C.M.; Lisa, G.; Sakata, Y. 2011. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct 988 (1-3): 65-72.

Pizzi, A. 1983. A new approach to the formulation and application of CCA preservatives. Wood Sci Technol 17(4): 303-319.

Richardson, H.W. 1997. Handbook of copper compounds and applications. 1st Edition. CRC Press.

Sivrikaya, H.; Can, A., 2013: Water repellent efficiency of wood treated with copper-azole combined with silicone and paraffin emulsions. In: Joint COST FP0904 & FP1006 International Workshop in Slovenia on Characterization of modified wood in relation to wood bonding and coating performance, 16-18 October 2013, Slovenia.

Shukla, S.R.; Zhang, J.; Kamdem, D.P. 2019. Pressure treatment of rubberwood (Heavea brasiliensis) with waterborne micronized copper azole: Effects on retention, copper leaching, decay resistance and mechanical properties. Constr Building Mater 216: 576-587.

Shebani, A.N.; Van Reenen, A.J.; Meincken, M. 2008: The effect of wood extractives on the thermal stability of different wood species. Thermochim Acta 471(1-2): 43-50.

Şimsek, H.; Baysal, E.; Yılmaz, M.; Çulha, F. 2013. Some mechanical properties of wood impregnated with environmentally-friendly boron and copper based chemicals. Wood Res 58(3): 495-504.

Temiz, A.; Yıldız, Ü.C.; Aydın, İ.; Eikenes, M.; Alfredsen, G.; Çolakoğlu, G. 2005. Surface roughness and colour characteristics of wood treated with preservatives after accelerated weathering test. Appl Surf Sci 250(1-4): 35-42.

Tomak, E. D.; Baysal, E.; Peker, H. 2012. The effect of some wood preservatives on the thermal degradation of Scotch pine. Thermochim Acta 547: 76-82.

Topaloğlu, E. 2019. Effect of accelerated weathering test on selected properties of bamboo, Scots pine and Oriental beech wood treated with waterborne preservatives. Drvna Indus 70(4): 391-398.

Türkoğlu, T.; Baysal, E.; Yüksel, M.; Peker, H.; Saçlı, C., Küreli, İ.; Toker, H., 2016. Mechanical properties of impregnated and heat treated oriental beech wood. BioResour 11(4): 8285-8296.

Turkish Standard. 1976. Wood - determination of density for physical and mechanical tests. TSE 2472. 1976. TSE. Ankara, Turkey.

Turkish Standard. 1976. Wood - determination of ultimate strength in static bending. TSE 2474. 1976. TSE. Ankara, Turkey.

Winandy, J.E.; LeVan, S.L.; Schaffer, E.L.; Lee, P.W., 1988. Effect of fire-retardant treatment and redrying on the mechanical properties of Douglas- fir and aspen plywood. Forest Products Laboratory. USA.

Winandy, J.E.; Lebow, P.K. 2001. Modeling strength loss in wood by chemical composition. Part I. An individual component model for southern pine. Wood Fiber Sci 33(2): 239-254.

Varkim, 2022. (In Turkish)

Yalınkılıç, M.K.; Baysal, E.; Demirci, Z. 1995. Effects of some boron compounds and/or water repellents on the higroscopicity of Brutia Pine (Pinus brutia Ten.) wood. Pamukkale University J Eng Sci 1(3): 161-168.

Yıldız, S.; Yıldız, Ü.C.; Tomak, E.D. 2010. Yeni nesil su bazlı mikro emülsiyon sistem formülasyonlarla muamele edilen Doğu kayınının bazı fiziksel özellikleri, In: III. Ulusal Karadeniz Ormancılık Kongresi, 20-22 May, Volume IV, 1691-1702 pages, Artvin, Turkey. (In Turkish)

Yıldız, Ü.C.; Temiz, A.; Gezer, E.D.; Yildiz, S. 2004. Effects of the wood preservatives on mechanical properties of yellow pine (Pinus sylvestris L.) wood. Build Environ 39(9): 1071-1075.

Yıldız, Ü.C. 1994. Bazı hızlı büyüyen ağaç türlerinden hazırlanan odun-polimer kompozitlerinin fiziksel ve mekanik özellikleri. Ph.D. Thesis, Karadeniz Techical University, Trabzon, Turkey. (In Turkish).




How to Cite

Altay, Çağlar ., Özdemir, E. ., Baysal, E. ., Ergün, M. E. ., & Toker, H. . (2023). Physical, mechanical, and thermal characteristics of alkaline copper quaternary impregnated oriental beech wood. Maderas-Cienc Tecnol, 26. Retrieved from