Sustainability strategies focused on thermal comfort and embodied energy of emerging housing in the Andean Region of Ecuador

Authors

DOI:

https://doi.org/10.22320/07190700.2023.13.01.04

Keywords:

thermal mass, habitability, eco-architecture

Abstract

Faced with the constant natural disasters in the Andean regions of Ecuador, several housing solutions have been proposed. However, these do not consider the user’s thermal comfort or the environmental impact they generate. This research addresses this issue from a bioclimatic perspective through an emerging housing model in an Andean climate, oriented to ensuring thermal comfort and reducing the environmental impact of the construction. The analysis focuses on indoor temperature and the Total Embodied Energy (EET) of the housing model. The methodology is divided into the definition of the model and strategies, on one hand, and, on the other, the analysis of these parameters through simulations and calculations. In addition, a comparative analysis with other studies is carried out. The strategies defined were solar gain, thermal mass, compactness, local-recycled materials, and modulation. The results show that the proposed model passively reaches comfort temperatures, and that the EET (2135.38 MJ/m2) is lower than that of other social housing.

Downloads

Download data is not yet available.

Author Biographies

Jefferson Torres-Quezada, Universidad Católica de Cuenca, Cuenca, Ecuador.

PhD in Architecture.
Professor-Researcher, School of Architecture.

Santiago Lituma-Saetama

Architect.
Independent researcher.

References

ÁLVAREZ, M. & AVILÉS, J. (2012). Ceniza Volcánica: Un nuevo Agente de Contaminación Química. Unidad de Preparación para desastres Químicos, Ministerio de Salud Pública, 5.

ANDERSEN, M., DISCOLI, C. A., VIEGAS, G. M. & MARTINI, I. (2017). Monitoreo energético y estrategias de RETROFIT para viviendas sociales en clima frío. Hábitat Sustentable, 7(2), 50-63. DOI: https://doi.org/10.22320/07190700.2017.07.02.05

ARSLAN, H. (2007). Re-design, re-use and recycle of temporary houses. Building and Environment, 42(1), 400-406. DOI: https://doi.org/10.1016/j.buildenv.2005.07.032

ARSLAN, H. & COSGUN, N. (2008). Reuse and recycle potentials of the temporary houses after occupancy: Example of Duzce, Turkey. Building and Environment, 43(5), 702-709. DOI: https://doi.org/10.1016/j.buildenv.2007.01.051

AZARI, R. & ABBASABADI, N. (2018). Embodied energy of buildings: A review of data, methods, challenges, and research trends. Energy and Buildings, 168, 225–235. DOI: https://doi.org/10.1016/j.enbuild.2018.03.003

CLIMATE CONSULTANT. (2021). Climate consultant software (6.0.15). Windows. Informe technologies.

CLIMATE.ONEBUILDING.ORG (2020). Repository of free climate data for building performance simulation. Recuperado de: https://climate.onebuilding.org/WMO_Region_3_South_America/ECU_Ecuador/index.html

CURADO, A. & DE FREITAS, V.P. (2019). Influence of thermal insulation of facades on the performance of retrofitted social housing buildings in Southern European countries. Sustainable Cities and Society, 48, 101534. DOI: https://doi.org/10.1016/j.scs.2019.101534

DABAIEH, M. & SERAGELDIN, A. A. (2020). Earth air heat exchanger, Trombe wall and green wall for passive heating and cooling in premium passive refugee house in Sweden. Energy Conversion and Management, 209, 112555. DOI:

https://doi.org/10.1016/j.enconman.2020.112555

DA CASA MARTÍN, F., CELIS D’AMICO, F. & ECHEVERRÍA VALIENTE, E. (2019). Metodología para elaborar una cartografía regional y aplicar estrategias bioclimáticas según la Carta de Givoni. Hábitat Sustentable, 9(2), 52-63. DOI: https://doi.org/10.22320/07190700.2019.09.02.05

DESIGNBUILDER (2016). DesignBuilder+EnergyPlus software (4.5.0.148). UK: DesignBuilder.

Dirección de Monitoreo de Eventos Adversos (2023). SitRep No.18-Deslizamiento Casual-Alausí: Informe de situación Nacional. Recuperdo de: https://www.gestionderiesgos.gob.ec/informes-de-situacion-actual-por-eventos-adversosecuador/

ECUAPLASTIC. (2021). Ecopak. Cubiertas y tableros ecológicos_Greentec. Recuperado de: https://ecuaplastic.com/index.php/productos/ecopak/14-productos/ecopak/71-greentec

EDIMCA. (2021). Sección de productos Edimca. Recuperado de: https://edimca.com.ec/productos-y-herrajes-de-madera.html

ESPINOSA, C. F. & CORTÉS, A. (2015). Confort higro-térmico en vivienda social y la percepción del habitante. Revista INVI, 30(85), 227-242. DOI: http://dx.doi.org/10.4067/S0718-83582015000300008

FONSECA-RODRÍGUEZ, O., SHERIDAN, S., HÄGGSTRÖM, E. & SCHUMANN, B. (2021). Effect of extreme hot and cold weather on cause-specific hospitalizations in Sweden: A time series analysis. Environmental Research, 193, 110535. DOI:

https://doi.org/10.1016/j.envres.2020.110535

GARCÍA MITJANS, S. M. (2022). Influencia de la tipología edificatoria y la morfología urbana en la demanda energética de la vivienda plurifamiliar en Barcelona [Projecte Final de Màster Oficial]. UPC, Escola Tècnica Superior d'Arquitectura de Barcelona. Recuperado de: http://hdl.handle.net/2117/375334

GIVONI, B. (1969). Climate and architecture. Amsterdam; London; New York: Ed. Elsevier.

GONZÁLEZ STUMPF, M. A., KULAKOWSKI, M. P., BREITENBACH, L. G. & KIRCH, F. (2014). A case study about embodied energy in concrete and structural masonry buildings. Revista de la Construcción, 13(2), 9–14. DOI: https://doi.org/10.4067/s0718-915x2014000200001

GULLBREKKEN, L., GRYNNING, S. & GAARDER, J. E. (2019). Thermal Performance of Insulated Constructions—Experimental Studies. Buildings, 9(2), 49. DOI: https://doi.org/10.3390/buildings9020049

HAMMOND, G. & JONES, C. (2008). Inventory of carbon & energy [ICE] Version 1.6a. Recuperado de: https://perigordvacance.typepad.com/files/inventoryofcarbonandenergy.pdf

HONG, Y. (2016). A study on the condition of temporary housing following disasters: Focus on container houses. Frontiers of Architectural Research, 6(3), 374-383. DOI: https://doi.org/10.1016/j.foar.2017.04.005

HUGHES, C., NATARAJAN, S., LIU, C., CHUNG, W. J. & HERRERA, M. (2019). Winter thermal comfort and health in the elderly. Energy Policy, 134, 110954. DOI: https://doi.org/10.1016/j.enpol.2019.110954

Instituto Nacional de Meteorología e Hidrología de la República del Ecuador [INAMHI]. (2017). Anuario meteorológico No 53-2013 (J. Olmedo, Ed.). Recuperado de: https://www.inamhi.gob.ec/docum_institucion/anuarios/meteorologicos/Am_2013.pdf

IWATA, T., HARADA, E. & MALY, E. (2023). Towards improving provision of wooden temporary housing: Analysis of repairs of temporary housing built by local contractors after the Great East Japan Earthquake. International Journal of Disaster Risk Reduction, 86, 103537. DOI: https://doi.org/10.1016/j.ijdrr.2023.103537

LINES, R., FAURE WALKER, J.P. & YORE, R. (2022). Progression through emergency and temporary shelter, transitional housing and permanent housing: A longitudinal case study from the 2018 Lombok earthquake Indonesia. International Journal of Disaster Risk Reduction, 75, 102959. DOI: https://doi.org/10.1016/j.ijdrr.2022.102959

KOEZJAKOV, A., URGE-VORSATZ, D., CRIJNS-GRAUS, W. & VAN DEN BROEK, M. (2018). The relationship between operational energy demand and embodied energy in Dutch residential buildings. Energy and Buildings, 165, 233–245. DOI: https://doi.org/10.1016/j.enbuild.2018.01.036

KUMAR, P. P., VENKATRAJ, V. & DIXIT, M. K. (2022). Evaluating the temporal representativeness of embodied energy data: A case study of higher education buildings. Energy and Buildings, 254, 111596. DOI: https://doi.org/10.1016/j.enbuild.2021.111596

MACIAS, J., ITURBURU, L., RODRIGUEZ, C., AGDAS, D., BOERO, A. & SORIANO, G. (2017). Embodied and operational energy assessment of different construction methods employed on social interest dwellings in Ecuador. Energy and Buildings, 151, 107-120. DOI: https://doi.org/10.1016/j.enbuild.2017.06.016

MAROCCO, R., & WINTER, T. (1997). Bosquejo de la evolución geodinámica del Ecuador. En Alain Winckell (Ed.), Geografía básica del Ecuador : 4. Geografía física : 1. Las condiciones del medio natural : los paisajes naturales del Ecuador, 15–52. CEDIG. Recuperado de: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-09/010022382.pdf

Ministerio de Desarrollo Urbano y Vivienda (2011). Eficiencia energética en la construcción en Ecuador. Norma Ecuatoriana de La Construcción NEC-11.

O´HEGARLY, R., KINNANE, O., LENNON, D. & COLCLOUGH, S. (2021). In-situ U-value monitoring of highly insulated building envelopes: Review and experimental investigation. Energy and Buildings, 252, 111447. DOI: https://doi.org/10.1016/j.enbuild.2021.111447

RODRÍGUEZ RUIZ, J. L., CASTAÑEDA HERNÁNDEZ, C. G., CRUZ LÓPEZ, R. & NERIA HERNÁNDEZ, R. (2021). Diseño de un módulo de bahareque autoconstructivo de bajo costo e impacto ambiental para viviendas unifamiliares. Revista RedCA, 3(9), 158-181. DOI: https://doi.org/10.36677/redca.v3i9.15866

SANTANA OLIVEIRA, B., TORRES-QUEZADA, J., COCH, H. & ISALGUE, A. (2022). Monitoring and Calculation Study in Mediterranean Residential Spaces: Thermal Performance Comparison for the Winter Season. Buildings, 12(3), 325. DOI: https://doi.org/10.3390/buildings12030325

Secretaría de Gestión de Riesgos. (2018). Plan nacional de respuesta ante desastres. Recuperado de:

https://www.gestionderiesgos.gob.ec/wp-content/uploads/downloads/2018/08/Plan-Nacional-de-Respuesta-SGR-RespondeEC.pdf

SHUKLA, A., TIWARI, G. N. & SODHA, M. S. (2009). Embodied Energy analysis of adobe house. Renewable Energy, 34(3), 775-761. DOI: https://doi.org/10.1016/j.renene.2008.04.002

SINOHARA, N., TOKUMARA, M., KAZAMA, M., YONEMOTO, Y., YOSHIOKA, M., KAGI, N., HASEGAWA, K., YOSHINO, H. & YANAGI, U. (2014). Indoor air quality and thermal comfort in temporary houses occupied after the Great East Japan Earthquake. Indoor air, 24(4), 425-437. DOI: https://doi.org/10.1111/ina.12082

TECHO. (2020). Techo Memoria 2020. Recuperado de: https://techo.org/wp-content/uploads/2021/11/TECHO-MEMORIA-2020-2_compressed.pdf

TECNICGLASS. (2021). Tecniglass. Solutions for Glazing and Glass Industry: Cuanto pesa un Vidrio - Formula para calcular el peso de un vidrio. Recuperdo de: https://tecnicglass.com/consejos/cuanto-pesa-un-vidrio/

THONIPARA, A., RUNST, P., OCHSNER, C. & BIZER, K. (2019). Energy efficiency of residential buildings in the European Union—An exploratory analysis of cross-country consumption patterns. Energy Policy, 129, 1156–1167. DOI:

https://doi.org/10.1016/j.enpol.2019.03.003

THORMARK, C. (2002). A low energy building in a life cycle—its embodied energy, energy need for operation and recycling potential. Building and Environment, 37(4), 429-435. DOI: https://doi.org/10.1016/s0360-1323(01)00033-6

TORRES-QUEZADA, J., COCH, H. & ISALGUÉ, A. (2019). Assessment of the reflectivity and emissivity impact on light metal roofs thermal behaviour, in warm and humid climate. Energy and Buildings, 188-189, 200-208. DOI: https://doi.org/10.1016/j.enbuild.2019.02.022

TORRES-QUEZADA, J. COCH ROURA, H., ISALGUÉ BUXEDA, A. & LÓPEZ BESORA, J. (2018). The roof Impact on the heat balance of low height buildings at low latitudes. PLEA 2018: Smart and Healthy Within the Two-Degree Limit: proceedings of the 34th International Conference on Passive and Low Energy Architecture: Dec 10-12, 2018 Hong Kong, China (pp. 937–938). The Chinese University of Hong Kong. Recuperado de: http://hdl.handle.net/2117/129130

TORRES-QUEZADA, J. & TORRES-AVILÉS, A. (2023a). The Construction Evolution and Their Energectic Impact in Andean Region Buildings. En Energetic Characterization of Building Evolution, 1-48. Springer Science+Business Media. Recuperado de: https://doi.org/10.1007/978-3-031-21598-8_1

TORRES-QUEZADA, J. & TORRES-AVILÉS, A. (2023b). The Constructive Evolution of the Envelope. The Impact on Indoor Thermal Conditions in Andean Regions. En Energetic Characterization of Building Evolution, 49-77. Springer Science+Business Media. Recuperado de: https://link.springer.com/chapter/10.1007/978-3-031-21598-8_2

TORRES-QUEZADA, J., TORRES, A., ISALGUÉ, A. & PAGES-RAMON, A. (2022). The evolution of embodied energy in andean residential buildings. Methodology applied to Cuenca-Ecuador. Energy and Buildings, 259, 111858. DOI: https://doi.org/10.1016/j.enbuild.2022.111858

VÁZQUEZ ESPÍ, M. (2001). Construcción e impacto sobre el ambiente: el caso de la tierra y otros materiales. Informes de la Construcción, 52(471), 29-43. DOI: https://doi.org/10.3989/ic.2001.v52.i471.681

YÉPEZ TAMBACO, D. A. (2012). Análisis de la arquitectura vernácula del Ecuador: Propuestas de una arquitectura contemporánea sustentable. [Tesis de máster]. Universidad Politécnica de Catalunya. Recuperado de: https://www.academia.edu/29898709/An%C3%A1lisis_de_la_arquitectura_vern%C3%A1cula_del_Ecuador_Propuestas_de_una_arquitectura_contempor%C3%A1nea_sustentable

ZEVALLOS, O. (1994). Lecciones del deslizamiento”La Josefina”-Ecuador. En Conferencia Interamericana sobre reducción de los desastres naturales. Cattegena de Indias, Colombia. Recuperado de: https://www.eird.org/deslizamientos/pdf/spa/doc5089/doc5089.htm

ZHOU, B., WEI, P., TAN, M., XU, Y., DING, L., MAO, X., ZHAO, Y. & KOSONEN, R. (2019). Capture efficiency and thermal comfort in Chinese residential kitchen with push-pull ventilation system in winter-a field study. Building and Environment, 149, 182-195. DOI: https://doi.org/10.1016/j.buildenv.2018.12.017

Published

2023-06-30

How to Cite

Torres-Quezada, J., & Lituma-Saetama, S. (2023). Sustainability strategies focused on thermal comfort and embodied energy of emerging housing in the Andean Region of Ecuador. Sustainable Habitat, 13(1), 42–55. https://doi.org/10.22320/07190700.2023.13.01.04

Issue

Section

Artículos

Most read articles by the same author(s)