Estratégias de sustentabilidade focadas no conforto térmico e na energia incorporada de uma habitação emergente na Região Andina do Equador

Autores

DOI:

https://doi.org/10.22320/07190700.2023.13.01.04

Palavras-chave:

massa térmica, habitabilidade, ecoarquitetura

Resumo

Diante dos constantes desastres naturais nas regiões andinas do Equador, várias soluções habitacionais foram propostas, mas elas não consideram o conforto térmico do usuário nem o impacto ambiental que geram. Esta pesquisa aborda esse problema a partir de uma perspectiva bioclimática por meio de um modelo de habitação emergente em um clima andino que visa garantir o conforto térmico e reduzir o impacto ambiental da construção. A análise se concentra na temperatura interna e na energia total incorporada (EIT) do modelo de habitação. A metodologia é dividida, por um lado, na definição do modelo e das estratégias e, por outro, na análise desses parâmetros por meio de simulações e cálculos. Além disso, é realizada uma análise comparativa com outros estudos. As estratégias definidas foram ganho solar, massa térmica, compacidade, materiais reciclados localmente e modulação. Os resultados mostram que o modelo proposto atinge passivamente temperaturas de conforto e o EIT (2135,38 MJ/m2) é menor do que o de outras habitações sociais.

Downloads

Não há dados estatísticos.

Biografias Autor

Jefferson Torres-Quezada, Universidad Católica de Cuenca, Cuenca, Ecuador.

Doutor em Arquitetura.
Professor-pesquisador, Escola de Arquitetura.

Santiago Lituma-Saetama

Arquiteto.
Pesquisador independente.

Referências

ÁLVAREZ, M. & AVILÉS, J. (2012). Ceniza Volcánica: Un nuevo Agente de Contaminación Química. Unidad de Preparación para desastres Químicos, Ministerio de Salud Pública, 5.

ANDERSEN, M., DISCOLI, C. A., VIEGAS, G. M. & MARTINI, I. (2017). Monitoreo energético y estrategias de RETROFIT para viviendas sociales en clima frío. Hábitat Sustentable, 7(2), 50-63. DOI: https://doi.org/10.22320/07190700.2017.07.02.05

ARSLAN, H. (2007). Re-design, re-use and recycle of temporary houses. Building and Environment, 42(1), 400-406. DOI: https://doi.org/10.1016/j.buildenv.2005.07.032

ARSLAN, H. & COSGUN, N. (2008). Reuse and recycle potentials of the temporary houses after occupancy: Example of Duzce, Turkey. Building and Environment, 43(5), 702-709. DOI: https://doi.org/10.1016/j.buildenv.2007.01.051

AZARI, R. & ABBASABADI, N. (2018). Embodied energy of buildings: A review of data, methods, challenges, and research trends. Energy and Buildings, 168, 225–235. DOI: https://doi.org/10.1016/j.enbuild.2018.03.003

CLIMATE CONSULTANT. (2021). Climate consultant software (6.0.15). Windows. Informe technologies.

CLIMATE.ONEBUILDING.ORG (2020). Repository of free climate data for building performance simulation. Recuperado de: https://climate.onebuilding.org/WMO_Region_3_South_America/ECU_Ecuador/index.html

CURADO, A. & DE FREITAS, V.P. (2019). Influence of thermal insulation of facades on the performance of retrofitted social housing buildings in Southern European countries. Sustainable Cities and Society, 48, 101534. DOI: https://doi.org/10.1016/j.scs.2019.101534

DABAIEH, M. & SERAGELDIN, A. A. (2020). Earth air heat exchanger, Trombe wall and green wall for passive heating and cooling in premium passive refugee house in Sweden. Energy Conversion and Management, 209, 112555. DOI:

https://doi.org/10.1016/j.enconman.2020.112555

DA CASA MARTÍN, F., CELIS D’AMICO, F. & ECHEVERRÍA VALIENTE, E. (2019). Metodología para elaborar una cartografía regional y aplicar estrategias bioclimáticas según la Carta de Givoni. Hábitat Sustentable, 9(2), 52-63. DOI: https://doi.org/10.22320/07190700.2019.09.02.05

DESIGNBUILDER (2016). DesignBuilder+EnergyPlus software (4.5.0.148). UK: DesignBuilder.

Dirección de Monitoreo de Eventos Adversos (2023). SitRep No.18-Deslizamiento Casual-Alausí: Informe de situación Nacional. Recuperdo de: https://www.gestionderiesgos.gob.ec/informes-de-situacion-actual-por-eventos-adversosecuador/

ECUAPLASTIC. (2021). Ecopak. Cubiertas y tableros ecológicos_Greentec. Recuperado de: https://ecuaplastic.com/index.php/productos/ecopak/14-productos/ecopak/71-greentec

EDIMCA. (2021). Sección de productos Edimca. Recuperado de: https://edimca.com.ec/productos-y-herrajes-de-madera.html

ESPINOSA, C. F. & CORTÉS, A. (2015). Confort higro-térmico en vivienda social y la percepción del habitante. Revista INVI, 30(85), 227-242. DOI: http://dx.doi.org/10.4067/S0718-83582015000300008

FONSECA-RODRÍGUEZ, O., SHERIDAN, S., HÄGGSTRÖM, E. & SCHUMANN, B. (2021). Effect of extreme hot and cold weather on cause-specific hospitalizations in Sweden: A time series analysis. Environmental Research, 193, 110535. DOI:

https://doi.org/10.1016/j.envres.2020.110535

GARCÍA MITJANS, S. M. (2022). Influencia de la tipología edificatoria y la morfología urbana en la demanda energética de la vivienda plurifamiliar en Barcelona [Projecte Final de Màster Oficial]. UPC, Escola Tècnica Superior d'Arquitectura de Barcelona. Recuperado de: http://hdl.handle.net/2117/375334

GIVONI, B. (1969). Climate and architecture. Amsterdam; London; New York: Ed. Elsevier.

GONZÁLEZ STUMPF, M. A., KULAKOWSKI, M. P., BREITENBACH, L. G. & KIRCH, F. (2014). A case study about embodied energy in concrete and structural masonry buildings. Revista de la Construcción, 13(2), 9–14. DOI: https://doi.org/10.4067/s0718-915x2014000200001

GULLBREKKEN, L., GRYNNING, S. & GAARDER, J. E. (2019). Thermal Performance of Insulated Constructions—Experimental Studies. Buildings, 9(2), 49. DOI: https://doi.org/10.3390/buildings9020049

HAMMOND, G. & JONES, C. (2008). Inventory of carbon & energy [ICE] Version 1.6a. Recuperado de: https://perigordvacance.typepad.com/files/inventoryofcarbonandenergy.pdf

HONG, Y. (2016). A study on the condition of temporary housing following disasters: Focus on container houses. Frontiers of Architectural Research, 6(3), 374-383. DOI: https://doi.org/10.1016/j.foar.2017.04.005

HUGHES, C., NATARAJAN, S., LIU, C., CHUNG, W. J. & HERRERA, M. (2019). Winter thermal comfort and health in the elderly. Energy Policy, 134, 110954. DOI: https://doi.org/10.1016/j.enpol.2019.110954

Instituto Nacional de Meteorología e Hidrología de la República del Ecuador [INAMHI]. (2017). Anuario meteorológico No 53-2013 (J. Olmedo, Ed.). Recuperado de: https://www.inamhi.gob.ec/docum_institucion/anuarios/meteorologicos/Am_2013.pdf

IWATA, T., HARADA, E. & MALY, E. (2023). Towards improving provision of wooden temporary housing: Analysis of repairs of temporary housing built by local contractors after the Great East Japan Earthquake. International Journal of Disaster Risk Reduction, 86, 103537. DOI: https://doi.org/10.1016/j.ijdrr.2023.103537

LINES, R., FAURE WALKER, J.P. & YORE, R. (2022). Progression through emergency and temporary shelter, transitional housing and permanent housing: A longitudinal case study from the 2018 Lombok earthquake Indonesia. International Journal of Disaster Risk Reduction, 75, 102959. DOI: https://doi.org/10.1016/j.ijdrr.2022.102959

KOEZJAKOV, A., URGE-VORSATZ, D., CRIJNS-GRAUS, W. & VAN DEN BROEK, M. (2018). The relationship between operational energy demand and embodied energy in Dutch residential buildings. Energy and Buildings, 165, 233–245. DOI: https://doi.org/10.1016/j.enbuild.2018.01.036

KUMAR, P. P., VENKATRAJ, V. & DIXIT, M. K. (2022). Evaluating the temporal representativeness of embodied energy data: A case study of higher education buildings. Energy and Buildings, 254, 111596. DOI: https://doi.org/10.1016/j.enbuild.2021.111596

MACIAS, J., ITURBURU, L., RODRIGUEZ, C., AGDAS, D., BOERO, A. & SORIANO, G. (2017). Embodied and operational energy assessment of different construction methods employed on social interest dwellings in Ecuador. Energy and Buildings, 151, 107-120. DOI: https://doi.org/10.1016/j.enbuild.2017.06.016

MAROCCO, R., & WINTER, T. (1997). Bosquejo de la evolución geodinámica del Ecuador. En Alain Winckell (Ed.), Geografía básica del Ecuador : 4. Geografía física : 1. Las condiciones del medio natural : los paisajes naturales del Ecuador, 15–52. CEDIG. Recuperado de: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-09/010022382.pdf

Ministerio de Desarrollo Urbano y Vivienda (2011). Eficiencia energética en la construcción en Ecuador. Norma Ecuatoriana de La Construcción NEC-11.

O´HEGARLY, R., KINNANE, O., LENNON, D. & COLCLOUGH, S. (2021). In-situ U-value monitoring of highly insulated building envelopes: Review and experimental investigation. Energy and Buildings, 252, 111447. DOI: https://doi.org/10.1016/j.enbuild.2021.111447

RODRÍGUEZ RUIZ, J. L., CASTAÑEDA HERNÁNDEZ, C. G., CRUZ LÓPEZ, R. & NERIA HERNÁNDEZ, R. (2021). Diseño de un módulo de bahareque autoconstructivo de bajo costo e impacto ambiental para viviendas unifamiliares. Revista RedCA, 3(9), 158-181. DOI: https://doi.org/10.36677/redca.v3i9.15866

SANTANA OLIVEIRA, B., TORRES-QUEZADA, J., COCH, H. & ISALGUE, A. (2022). Monitoring and Calculation Study in Mediterranean Residential Spaces: Thermal Performance Comparison for the Winter Season. Buildings, 12(3), 325. DOI: https://doi.org/10.3390/buildings12030325

Secretaría de Gestión de Riesgos. (2018). Plan nacional de respuesta ante desastres. Recuperado de:

https://www.gestionderiesgos.gob.ec/wp-content/uploads/downloads/2018/08/Plan-Nacional-de-Respuesta-SGR-RespondeEC.pdf

SHUKLA, A., TIWARI, G. N. & SODHA, M. S. (2009). Embodied Energy analysis of adobe house. Renewable Energy, 34(3), 775-761. DOI: https://doi.org/10.1016/j.renene.2008.04.002

SINOHARA, N., TOKUMARA, M., KAZAMA, M., YONEMOTO, Y., YOSHIOKA, M., KAGI, N., HASEGAWA, K., YOSHINO, H. & YANAGI, U. (2014). Indoor air quality and thermal comfort in temporary houses occupied after the Great East Japan Earthquake. Indoor air, 24(4), 425-437. DOI: https://doi.org/10.1111/ina.12082

TECHO. (2020). Techo Memoria 2020. Recuperado de: https://techo.org/wp-content/uploads/2021/11/TECHO-MEMORIA-2020-2_compressed.pdf

TECNICGLASS. (2021). Tecniglass. Solutions for Glazing and Glass Industry: Cuanto pesa un Vidrio - Formula para calcular el peso de un vidrio. Recuperdo de: https://tecnicglass.com/consejos/cuanto-pesa-un-vidrio/

THONIPARA, A., RUNST, P., OCHSNER, C. & BIZER, K. (2019). Energy efficiency of residential buildings in the European Union—An exploratory analysis of cross-country consumption patterns. Energy Policy, 129, 1156–1167. DOI:

https://doi.org/10.1016/j.enpol.2019.03.003

THORMARK, C. (2002). A low energy building in a life cycle—its embodied energy, energy need for operation and recycling potential. Building and Environment, 37(4), 429-435. DOI: https://doi.org/10.1016/s0360-1323(01)00033-6

TORRES-QUEZADA, J., COCH, H. & ISALGUÉ, A. (2019). Assessment of the reflectivity and emissivity impact on light metal roofs thermal behaviour, in warm and humid climate. Energy and Buildings, 188-189, 200-208. DOI: https://doi.org/10.1016/j.enbuild.2019.02.022

TORRES-QUEZADA, J. COCH ROURA, H., ISALGUÉ BUXEDA, A. & LÓPEZ BESORA, J. (2018). The roof Impact on the heat balance of low height buildings at low latitudes. PLEA 2018: Smart and Healthy Within the Two-Degree Limit: proceedings of the 34th International Conference on Passive and Low Energy Architecture: Dec 10-12, 2018 Hong Kong, China (pp. 937–938). The Chinese University of Hong Kong. Recuperado de: http://hdl.handle.net/2117/129130

TORRES-QUEZADA, J. & TORRES-AVILÉS, A. (2023a). The Construction Evolution and Their Energectic Impact in Andean Region Buildings. En Energetic Characterization of Building Evolution, 1-48. Springer Science+Business Media. Recuperado de: https://doi.org/10.1007/978-3-031-21598-8_1

TORRES-QUEZADA, J. & TORRES-AVILÉS, A. (2023b). The Constructive Evolution of the Envelope. The Impact on Indoor Thermal Conditions in Andean Regions. En Energetic Characterization of Building Evolution, 49-77. Springer Science+Business Media. Recuperado de: https://link.springer.com/chapter/10.1007/978-3-031-21598-8_2

TORRES-QUEZADA, J., TORRES, A., ISALGUÉ, A. & PAGES-RAMON, A. (2022). The evolution of embodied energy in andean residential buildings. Methodology applied to Cuenca-Ecuador. Energy and Buildings, 259, 111858. DOI: https://doi.org/10.1016/j.enbuild.2022.111858

VÁZQUEZ ESPÍ, M. (2001). Construcción e impacto sobre el ambiente: el caso de la tierra y otros materiales. Informes de la Construcción, 52(471), 29-43. DOI: https://doi.org/10.3989/ic.2001.v52.i471.681

YÉPEZ TAMBACO, D. A. (2012). Análisis de la arquitectura vernácula del Ecuador: Propuestas de una arquitectura contemporánea sustentable. [Tesis de máster]. Universidad Politécnica de Catalunya. Recuperado de: https://www.academia.edu/29898709/An%C3%A1lisis_de_la_arquitectura_vern%C3%A1cula_del_Ecuador_Propuestas_de_una_arquitectura_contempor%C3%A1nea_sustentable

ZEVALLOS, O. (1994). Lecciones del deslizamiento”La Josefina”-Ecuador. En Conferencia Interamericana sobre reducción de los desastres naturales. Cattegena de Indias, Colombia. Recuperado de: https://www.eird.org/deslizamientos/pdf/spa/doc5089/doc5089.htm

ZHOU, B., WEI, P., TAN, M., XU, Y., DING, L., MAO, X., ZHAO, Y. & KOSONEN, R. (2019). Capture efficiency and thermal comfort in Chinese residential kitchen with push-pull ventilation system in winter-a field study. Building and Environment, 149, 182-195. DOI: https://doi.org/10.1016/j.buildenv.2018.12.017

Publicado

2023-06-30

Como Citar

Torres-Quezada, J., & Lituma-Saetama, S. (2023). Estratégias de sustentabilidade focadas no conforto térmico e na energia incorporada de uma habitação emergente na Região Andina do Equador. Hábitat Sustentable, 13(1), 42–55. https://doi.org/10.22320/07190700.2023.13.01.04

Edição

Secção

Artículos

Artigos mais lidos do(s) mesmo(s) autor(es)