Bioclimatic design of middle housing in the times of the oil boom in Tampico, Mexico (1912-1930)

Authors

DOI:

https://doi.org/10.22320/07190700.2023.13.02.07

Keywords:

bioclimatic architecture, hot-humid climate, housing, passive systems, wind flow

Abstract

This paper aims to determine bioclimatic strategies suitable for the climate of Tampico and to confirm whether they were applied in the middle housing built during the oil boom in the city. The strategies applicable to the local climate are established using a climatic characterization of Tampico and a review of the recommendations by bioclimatic architecture authors. A housing catalog of the time with bioclimatic characteristics is made, obtaining access to five. Users are interviewed to know their perception of indoor comfort, studying the housing in depth regarding the existence or not of bioclimatic strategies, concluding that they have climate-appropriate bioclimatic strategies, which are the same as those used in the houses of the time (oil boom), and that have helped to improve the indoor comfort of the buildings. Using them today will help reduce indoor heating, the excessive use of non-renewable energies, and the high energy consumption costs.

Downloads

Download data is not yet available.

Author Biographies

Angelica Orozco-Cejudo, Autonomous University of Tamaulipas, Tampico, México.

Master in Architectural Design.
PhD student, free time lecturer, Faculty of Architecture, Design and Urbanism.

Mireya Alicia Rosas-Lusett, Universidad Autónoma de Tamaulipas, Tampico, México.

PhD in Architecture.
Researcher and Full-time Professor, Faculty of Architecture, Design and Urbanism.

María López de Asiain-Alberich, University of Seville, Sevilla, España.

PhD in Architecture.
Associate Professor PhD, University Institute of Architecture and Construction Sciences, School of Architecture.

References

AHMED, T., KUMAR, P., & MOTTET, L. (2021). Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality. Renewable and Sustainable Energy Reviews, 138, 110669. https://doi.org/10.1016/J.RSER.2020.110669

AULICIEMS, A. (1981). Towards a psycho-physiological model of thermal perception. International Journal of Biometeorology, 25(2), 109-122. https://doi.org/10.1007/BF02184458

BARTORILA, M. Á., & LOREDO, R. I. (2017). La Industria Petrolera y la Modernidad: Transformaciones Urbanas en Tampico-Madero, Tamaulipas, México. CONTEXTO. Revista De La Facultad De Arquitectura De La Universidad Autónoma De Nuevo León, 11(14), 43–61. https://contexto.uanl.mx/index.php/contexto/article/view/63

BELTRÁN-FERNÁNDEZ, M., GARCÍA-MUÑOZ, J., & DUFRASNES, E. (2017). Analysis of the bioclimatic strategies used by Frank Lloyd Wright in the Jacobs I house. Informes de la Construccion, 69(547), 213. https://doi.org/10.3989/ic.16.156

CRUZ-RICO, J., RIVAS, D., & TEJEDA-MARTÍNEZ, A. (2015). Variability of surface air temperature in Tampico, northeastern Mexico. International Journal of Climatology, 35(11), 3220–3228. https://doi.org/10.1002/joc.4200

DE DEAR, R. (2004). Thermal comfort in practice. Indoor Air, (14, s7), 23-39. https://doi.org/10.1111/j.1600-0668.2004.00270.x

GAYTAN-ORTIZ, I. (2019). Diseño bioclimático en la arquitectura de hoy. Artificio 1(1), 14-23. https://revistas.uaa.mx/index.php/artificio/article/view/2296

DOMÍNGUEZ RUIZ, V., & REY PÉREZ, J. (2019). Vernacularmente: patrimonio cultural y retos de sociedad. revista PH, 97, 15-16. https://doi.org/10.33349/2019.97.4375

ELAOUZY, Y., & EL FADAR, A. (2023). Sustainability of building-integrated bioclimatic design strategies depending on energy affordability. Renewable and Sustainable Energy Reviews, 179, 113295. https://doi.org/10.1016/J.RSER.2023.113295

ESPUNA-MÚJICA, J. A. (2011). Evolución de la vivienda inglesa en Tampico: La influencia del modelo de vivienda inglesa en la Costa del Golfo de México. Editorial Académica Española.

FRASER, A. M., CHESTER, M. V., & EISENMAN, D. (2018). Strategic locating of refuges for extreme heat events (or heat waves). Urban Climate, 25, 109-119. https://doi.org/10.1016/j.uclim.2018.04.009

GIVONI, B. (1992). Comfort, climate analysis and building design guidelines. Energy and Buildings, 18(1), 11–23. https://doi.org/10.1016/0378-7788(92)90047-K

GIVONI, B. (2011). Indoor temperature reduction by passive cooling systems. Solar Energy, 85(8), 1692–1726. https://doi.org/10.1016/j.solener.2009.10.003

HU, M., ZHANG, K., NGUYEN, Q., & TASDIZEN, T. (2023). The effects of passive design on indoor thermal comfort and energy savings for residential buildings in hot climates: A systematic review. Urban Climate, 49, 101466. https://doi.org/10.1016/j.uclim.2023.101466

LÓPEZ DE ASIAIN, J. (2001). Arquitectura, ciudad, medio ambiente. Universidad de Sevilla.

MANZANO-AGUGLIARO, F., MONTOYA, F. G., SABIO-ORTEGA, A., & GARCÍA-CRUZ, A. (2015). Review of Bioclimatic Architecture Strategies for Achieving Thermal Comfort. Renewable & Sustainable Energy Reviews, 49, 736-755. https://doi.org/10.1016/j.rser.2015.04.095

MONROY, M. M. (2001). Claves del diseño bioclimático. Basa, 23, 170-179. https://topodata.com/wp-content/uploads/2019/10/urbanismo-bioclimatico1.pdf

MORGAN, N., & GÓMEZ-AZPEITIA, G. (2018). Development of a Mexican Standard of Thermal Comfort for Naturally Ventilated Buildings. Proceedings of 10th Windsor Conference: Rethinking Comfort, 596–608. https://windsorconference.com/wp-content/uploads/2019/04/W18_PROCEEDINGS-compressed.pdf

OLGYAY, V. (2004). Arquitectura y clima: manual de diseño bioclimático para arquitectos y urbanistas. Editorial GG

REY, J. (2017). From heritage as an architectural object to the heritagization of the landscape: A review of the International Charters and Textos of cultural heritage. Estoa. Journal of the Faculty of Architecture and Urbanism, 6(10), 35–48. https://doi.org/10.18537/est.v006.n010.04

RIBEIRO, A. S., ALVES E SOUSA, J., COX, M. G., FORBES, A. B., MATIAS, L. C., & MARTINS, L. L. (2015). Uncertainty Analysis of Thermal Comfort Parameters. International Journal of Thermophysics, 36(8), 2124-2149. https://doi.org/10.1007/s10765-015-1888-1

ROSAS-LUSETT, M., CALZADA, J. R., & ROURA, H. C. (2020). Buildings in warm humid weather. Tampico, Tamaulipas case. Mexico. Architecture, City and Environment, 15(44), 1–24. https://doi.org/10.5821/ace.15.44.5667

RUBIO-BELLIDO, C., PULIDO-ARCAS, J. A., & CABEZA-LAINEZ, J. M. (2015). Adaptation strategies and resilience to climate change of historic dwellings. Sustainability, 7(4), 3695-3713. https://doi.org/10.3390/su7043695

SERRA FLORENSA, R., & COCH ROURA, H. (1995). Arquitectura y energía natural. Edicions Upc. http://nicolasdiruscio.com.ar/archivos/Libros/Arquitectura%20y%20energia%20natural.pdf

SZOKOLAY, S. (2014). Introduction to Architectural Science. Routledge. https://doi.org/10.4324/9781315852409

SZOKOLAY, S. V. (1986). Climate analysis based on the psychrometric chart. International Journal of Ambient Energy, 7(4), 171-182. https://doi.org/10.1080/01430750.1986.9675499

VAN HOOF, J., MAZEJ, M., & HENSEN, J. L. (2010). Thermal comfort: Research and practice. Frontiers in Bioscience, 15(2), 765–788. https://doi.org/10.2741/3645

VELASCO-ROLDÁN, L. (2011). El Movimiento del Aire Condicionante de Diseño Arquitectónico. http://luisvelascoroldan.com/wpcontent/uploads/libro-final.pdf

Published

2023-12-31

How to Cite

Orozco-Cejudo, A., Rosas-Lusett, M. A., & López de Asiain-Alberich, M. (2023). Bioclimatic design of middle housing in the times of the oil boom in Tampico, Mexico (1912-1930). Sustainable Habitat, 13(2), 92–105. https://doi.org/10.22320/07190700.2023.13.02.07

Issue

Section

Artículos